40 research outputs found

    Stratigraphic correlation and paleoenvironmental analysis of the hydrocarbon-bearing Early Miocene Euphrates and Jeribe formations in the Zagros folded-thrust belt

    Get PDF
    The Lower Miocene Euphrates and Jeribe formations are considered as the main targets of the Tertiary petroleum system in the western part of the Zagros Basin. The formations consist of carbonates with some evaporate intercalations of the Dhiban Formation. This study utilized data from a field investigation including newly described outcrop sections and newly discovered productive oil fields within the Kirkuk embayment zone of the Zagros fold and thrust belt such as Sarqala and Kurdamir wells. This work is the first to show a stratigraphic correlation and paleoenvironmental interpretation by investigating both well data and new outcrop data. Three depositional environments were identified, (1) an inner and outer ramp belts environment, (2) shoal environment, and (3) restricted lagoon environment. Within these 3 environments, 12 microfacies were identified, based on the distribution of fauna mainly benthonic foraminifera, rock textures, and sedimentary structures. The inferred shallow water depths and variable salinities in both the Euphrates Formation and Jeribe Formation carbonates are consistent with deposition on the inner ramp (restricted lagoon and shoal) environments. Those found in the Euphrates Formation constrained the depositional environment to the restricted lagoon and shoal environment, while the microfacies in the Jeribe Formation provided evidence for an inner ramp and middle to outer ramp belt environments. This study represents the first detailed research that focuses on the stratigraphic correlation and changes in carbonate facies with the main aim to provide a wider understanding of stratigraphy of these carbonate reservoirs throughout the northern part of Iraq

    Thermal modelling of gas generation and retention in the Jurassic organic-rich intervals in the Darquain field, Abadan Plain, SW Iran

    Get PDF
    The petroleum system with Jurassic source rocks is an important part of the hydrocarbons discovered in the Middle East. Limited studies have been done on the Jurassic intervals in the 26,500 km2 Abadan Plain in south-west Iran, mainly due to the deep burial and a limited number of wells that reach the basal Jurassic successions. The goal of this study was to evaluate the Jurassic organic-rich intervals and shale gas play in the Darquain field using organic geochemistry, organic petrography, biomarker analysis, and basin modelling methods. This study showed that organic-rich zones present in the Jurassic intervals of Darquain field could be sources of conventional and unconventional gas reserves. The organic matter content of samples from the organic-rich zones corresponds to medium-to-high-sulphur kerogen Type II-S marine origin. The biomarker characteristics of organic-rich zones indicate carbonate source rocks that contain marine organic matter. The biomarker results also suggest a marine environment with reducing conditions for the source rocks. The constructed thermal model for four pseudo-wells indicates that, in the kitchen area of the Jurassic gas reserve, methane has been generated in the Sargelu and Neyriz source rocks from Early Cretaceous to recent times and the transformation ratio of organic matter is more than 97%. These organic-rich zones with high initial total organic carbon (TOC) are in the gas maturity stage [1.5–2.2% vitrinite reflectance in oil (Ro)] and could be good unconventional gas reserves and gas source rocks. The model also indicates that there is a huge quantity of retained gas within the Jurassic organic-rich intervals

    Engineering geological characterisation of the Barzaman Formation, with reference to coastal Dubai, UAE

    Get PDF
    This paper describes the pedogenically altered fluvial deposits comprising the Barzaman Formation, UAE. This formation is composed of a sequence of rocks dominated by variably cemented conglomerates thought to be middle Miocene to Pliocene in age. The well-established descriptive scheme currently used for describing the formation is reviewed and a simple visual descriptive lithological classification is proposed based on the three principal lithological components visible in a hand specimen: mottled white calcisiltite matrix/cement, palygorskite rich marl and clasts derived from the Oman Mountains (gabbro, chert and weathered ultramafic rock). Data on the mineralogy and microstructure of the rock constituents is presented and some implications for the geotechnical characterisation of the formation are briefly discussed
    corecore