12 research outputs found
Refactoring of a Synthetic Raspberry Ketone Pathway with EcoFlex
Background: A key focus of synthetic biology is to develop microbial or cell-free based biobased routes to value-added chemicals such as fragrances. Originally, we developed the EcoFlex system, a Golden Gate toolkit, to study genes/pathways flexibly using Escherichia coli heterologous expression. In this current work, we sought to use EcoFlex to optimise a synthetic raspberry ketone biosynthetic pathway. Raspberry ketone is a high-value (~£20,000 kg-1) fine chemical farmed from raspberry (Rubeus rubrum) fruit.Results: By applying a synthetic biology led design-build-test-learn cycle approach, we refactor the raspberry ketone pathway from a low level of productivity (0.2 mg/L), to achieve a 65-fold (12.9 mg/L) improvement in production. We perform this optimisation at the prototype level (using microtiter plate cultures) with E. coli DH10, as a routine cloning host. The use of E. coli DH10 facilitates the Golden Gate cloning process for the screening of combinatorial libraries. In addition, we also newly establish a novel colour-based phenotypic screen to identify productive clones quickly from solid/liquid culture. Conclusions: Our findings provide a stable raspberry ketone pathway that relies upon a natural feedstock (L-tyrosine) and uses only constitutive promoters to control gene expression. In conclusion we demonstrate the capability of EcoFlex for fine-tuning a model fine chemical pathway and provide a range of newly characterised promoter tools gene expression in E. coli
The current role of MRI in differentiating multiple sclerosis from its imaging mimics
MRI red flags proposed over a decade ago by the European Magnetic Resonance Network in MS (MAGNIMS) have guided clinicians in the diagnosis of multiple sclerosis (MS). However, the past 10 years have seen increased recognition that vascular disease can coexist and possibly interact with MS, improvements in the reliability of ways to differentiate MS from novel antibody-mediated CNS disorders (such as anti-aquaporin-4 antibody and myelin-oligodendrocyte glycoprotein antibody-associated diseases) and advances in MRI techniques. In this Review, MAGNIMS updates the imaging features that differentiate the most common mimics of MS, particularly age-related cerebrovascular disease and neuromyelitis optica, from MS itself. We also provide a pragmatic summary of the clinically useful MRI features that distinguish MS from its mimics and discuss the future of nonconventional techniques that have identified promising disease-specific features