12 research outputs found

    Cetuximab Conjugated with Octreotide and Entrapped Calcium Alginate-beads for Targeting Somatostatin Receptors.

    Get PDF
    There is a need to formulate oral cetuximab (CTX) for targeting colorectal cancer, which is reported to express somatostatin receptors (SSTRs). Therefore, coating CTX with a somatostatin analogue such as octreotide (OCT) is beneficial. Alginate was used to coat CTX to facilitate delivery to the gastrointestinal tract (GIT). This study aimed to deliver CTX conjugated with OCT in the form of microparticles as a GIT-targeted SSTR therapy. Both CTX and OCT were conjugated using a solvent evaporation method and the conjugated CTX-OCT was then loaded onto Ca-alginate-beads (CTX-OCT-Alg), which were characterized for drug interactions using differential scanning calorimetry (DSC), and Fourier transform infrared spectra (FTIR). Moreover, the morphology of formulated beads was examined using a scanning electron microscope (SEM). The drug content and release profile were studied using UV spectroscopy. Finally, in vitro cytotoxicity of all compounds was evaluated. The results showed homogenous conjugated CTX-OCT with a diameter of 0.4 mm. DSC showed a delay in the OCT peak that appeared after 200 °C due to small polymer interaction that shifted the OCT peak. Moreover, FTIR showed no prominent interaction. SEM showed clear empty cavities in the plain Ca-alginate-beads, while CTX-OCT-Alg showed occupied beads without cavities. CTX-OCT-Alg had a negligible release in 0.1 N HCl, while the CTX-OCT was completely released after 300 min in phosphate buffer pH 7.4. All formulations showed good antiproliferative activity compared with free drugs. The formulated CTX-OCT-Alg are a promising platform for targeting colorectal cancer through GIT

    Smart Injectable Chitosan Hydrogels Loaded with 5-Fluorouracil for the Treatment of Breast Cancer

    Get PDF
    The treatment of breast cancer requires long chemotherapy management, which is accompanied by severe side effects. Localized delivery of anticancer drugs helps to increase the drug concentration at the site of action and overcome such a problem. In the present study, chitosan hydrogel was prepared for local delivery of 5-Fluorouracil. The in vitro release behavior was investigated and the anticancer activity was evaluated against MCF-7 cells using MTT assay. The in vivo studies were investigated via intra-tumoral injection of a 5-FU loaded hydrogel into breast cancer of female rats. The results indicated that the modified hydrogel has excellent physicochemical properties with a sustained in vitro release profile matching a zero-order kinetic for one month. In addition, the hydrogel showed superior inhibition of cell viability compared with the untreated control group. Moreover, the in vivo studies resulted in antitumor activity with minor side effects. The tumor volume and level of tumor markers in blood were inhibited significantly by applying the hydrogel compared with the untreated control group. In conclusion, the designed injectable hydrogels are potential drug delivery systems for the treatment of breast cancer with a controlled drug release profile, which could be suitable for decreasing the side effects of chemotherapy agents
    corecore