5,593 research outputs found

    Identification of nonlinear sparse networks using sparse Bayesian learning

    Get PDF
    © 2017 IEEE. This paper considers a parametric approach to infer sparse networks described by nonlinear ARX models, with linear ARX treated as a special case. The proposed method infers both the Boolean structure and the internal dynamics of the network. It considers classes of nonlinear systems that can be written as weighted (unknown) sums of nonlinear functions chosen from a fixed basis dictionary. Due to the sparse topology, coefficients of most groups are zero. Besides, only a few nonlinear terms in nonzero groups contribute to the internal dynamics. Therefore, the identification problem should estimate both group-and element-sparse parameter vectors. The proposed method combines Sparse Bayesian Learning (SBL) and Group Sparse Bayesian Learning (GSBL) to impose both kinds of sparsity. Simulations indicate that our method outperforms SBL and GSBL when these are applied alone. A linear ring structure network also illustrates that the proposed method has improved performance to the kernel approach

    Using local ecological knowledge to assess the status of the Critically Endangered Chinese giant salamander Andrias davidianus in Guizhou Province, China

    Get PDF
    The Critically Endangered Chinese giant salamander Andrias davidianus, the world's largest amphibian, is severely threatened by unsustainable exploitation of wild individuals. However, field data with which to assess the salamander's status, population trends, or exploitation across its geographical range are limited, and recent field surveys using standard ecological field techniques have typically failed to detect wild individuals. We conducted community-based fieldwork in three national nature reserves (Fanjingshan, Leigongshan and Mayanghe) in Guizhou Province, China, to assess whether local ecological knowledge constitutes a useful tool for salamander conservation. We collected a sample of dated salamander sighting records and associated data from these reserves for comparative assessment of the relative status of salamander populations across the region. Although Fanjingshan and Leigongshan are still priority sites for salamander conservation, few recent sightings were recorded in either reserve, and respondents considered that salamanders had declined locally at both reserves. The species may already be functionally extinct at Mayanghe. Although respondent data on threats to salamanders in Guizhou are more difficult to interpret, overharvesting was the most commonly suggested explanation for salamander declines, and it is likely that the growing salamander farming industry is the primary driver of salamander extraction from Guizhou's reserves. Questionnaire-based surveys can collect novel quantitative data that provide unique insights into the local status of salamander populations, and we advocate wide-scale incorporation of this research approach into future salamander field programmes

    Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance

    Get PDF
    Adiponectin plays a key role in the regulation of the whole-body energy homeostasis by modulating glucose and lipid metabolism. Although obesity-induced reduction of adiponectin expression is primarily ascribed to a transcriptional regulation failure, the underlying mechanisms are largely undefined. Here we show that DNA hypermethylation of a particular region of the adiponectin promoter suppresses adiponectin expression through epigenetic control and, in turn, exacerbates metabolic diseases in obesity. Obesity-induced, pro-inflammatory cytokines promote DNMT1 expression and its enzymatic activity. Activated DNMT1 selectively methylates and stimulates compact chromatin structure in the adiponectin promoter, impeding adiponectin expression. Suppressing DNMT1 activity with a DNMT inhibitor resulted in the amelioration of obesity-induced glucose intolerance and insulin resistance in an adiponectin-dependent manner. These findings suggest a critical role of adiponectin gene epigenetic control by DNMT1 in governing energy homeostasis, implying that modulating DNMT1 activity represents a new strategy for the treatment of obesity-related diseases.published_or_final_versio

    Contamination by respiratory viruses on outer surface of medical masks used by hospital healthcare workers

    Full text link
    © 2019 The Author(s). Background: Medical masks are commonly used in health care settings to protect healthcare workers (HCWs) from respiratory and other infections. Airborne respiratory pathogens may settle on the surface of used masks layers, resulting in contamination. The main aim of this study was to study the presence of viruses on the surface of medical masks. Methods: Two pilot studies in laboratory and clinical settings were carried out to determine the areas of masks likely to contain maximum viral particles. A laboratory study using a mannequin and fluorescent spray showed maximum particles concentrated on upper right, middle and left sections of the medical masks. These findings were confirmed through a small clinical study. The main study was then conducted in high-risk wards of three selected hospitals in Beijing China. Participants (n = 148) were asked to wear medical masks for a shift (6-8 h) or as long as they could tolerate. Used samples of medical masks were tested for presence of respiratory viruses in upper sections of the medical masks, in line with the pilot studies. Results: Overall virus positivity rate was 10.1% (15/148). Commonly isolated viruses from masks samples were adenovirus (n = 7), bocavirus (n = 2), respiratory syncytial virus (n = 2) and influenza virus (n = 2). Virus positivity was significantly higher in masks samples worn for > 6 h (14.1%, 14/99 versus 1.2%, 1/49, OR 7.9, 95% CI 1.01-61.99) and in samples used by participants who examined > 25 patients per day (16.9%, 12/71 versus 3.9%, 3/77, OR 5.02, 95% CI 1.35-18.60). Most of the participants (83.8%, 124/148) reported at least one problem associated with mask use. Commonly reported problems were pressure on face (16.9%, 25/148), breathing difficulty (12.2%, 18/148), discomfort (9.5% 14/148), trouble communicating with the patient (7.4%, 11/148) and headache (6.1%, 9/148). Conclusion: Respiratory pathogens on the outer surface of the used medical masks may result in self-contamination. The risk is higher with longer duration of mask use (> 6 h) and with higher rates of clinical contact. Protocols on duration of mask use should specify a maximum time of continuous use, and should consider guidance in high contact settings. Viruses were isolated from the upper sections of around 10% samples, but other sections of masks may also be contaminated. HCWs should be aware of these risks in order to protect themselves and people around them

    Microbial catabolic activities are naturally selected by metabolic energy harvest rate

    Get PDF
    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate

    Neutrons from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 AMeV

    Full text link
    We measured neutron triple-differential cross sections from multiplicity-selected Au-Au collisions at 150, 250, 400, and 650 \AMeV. The reaction plane for each collision was estimated from the summed transverse velocity vector of the charged fragments emitted in the collision. We examined the azimuthal distribution of the triple-differential cross sections as a function of the polar angle and the neutron rapidity. We extracted the average in--plane transverse momentum ⟨Px⟩\langle P_x\rangle and the normalized observable ⟨Px/P⊥⟩\langle P_x/P_\perp\rangle, where P⊥P_\perp is the neutron transverse momentum, as a function of the neutron center-of-mass rapidity, and we examined the dependence of these observables on beam energy. These collective flow observables for neutrons, which are consistent with those of protons plus bound nucleons from the Plastic Ball Group, agree with the Boltzmann--Uehling--Uhlenbeck (BUU) calculations with a momentum--dependent interaction. Also, we calculated the polar-angle-integrated maximum azimuthal anisotropy ratio R from the value of ⟨Px/P⊥⟩\langle P_x/P_\perp\rangle.Comment: 20 LaTeX pages. 11 figures to be faxed on request, send email to sender's addres

    Evidence for a fractional quantum Hall state with anisotropic longitudinal transport

    Get PDF
    At high magnetic fields, where the Fermi level lies in the N=0 lowest Landau level (LL), a clean two-dimensional electron system (2DES) exhibits numerous incompressible liquid phases which display the fractional quantized Hall effect (FQHE) (Das Sarma and Pinczuk, 1997). These liquid phases do not break rotational symmetry, exhibiting resistivities which are isotropic in the plane. In contrast, at lower fields, when the Fermi level lies in the N≥2N\ge2 third and several higher LLs, the 2DES displays a distinctly different class of collective states. In particular, near half filling of these high LLs the 2DES exhibits a strongly anisotropic longitudinal resistance at low temperatures (Lilly et al., 1999; Du et al., 1999). These "stripe" phases, which do not exhibit the quantized Hall effect, resemble nematic liquid crystals, possessing broken rotational symmetry and orientational order (Koulakov et al., 1996; Fogler et al., 1996; Moessner and Chalker, 1996; Fradkin and Kivelson, 1999; Fradkin et al, 2010). Here we report a surprising new observation: An electronic configuration in the N=1 second LL whose resistivity tensor simultaneously displays a robust fractionally quantized Hall plateau and a strongly anisotropic longitudinal resistance resembling that of the stripe phases.Comment: Nature Physics, (2011

    Characterisation of feline renal cortical fibroblast cultures and their transcriptional response to transforming growth factor beta 1

    Get PDF
    Chronic kidney disease (CKD) is common in geriatric cats, and the most prevalent pathology is chronic tubulointerstitial inflammation and fibrosis. The cell type predominantly responsible for the production of extra-cellular matrix in renal fibrosis is the myofibroblast, and fibroblast to myofibroblast differentiation is probably a crucial event. The cytokine TGF-β1 is reportedly the most important regulator of myofibroblastic differentiation in other species. The aim of this study was to isolate and characterise renal fibroblasts from cadaverous kidney tissue of cats with and without CKD, and to investigate the transcriptional response to TGF-β1

    Preparation and Measurement of Three-Qubit Entanglement in a Superconducting Circuit

    Full text link
    Traditionally, quantum entanglement has played a central role in foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can exhibit results at odds with classical behavior. These discrepancies increase exponentially with the number of entangled particles. When entanglement is extended from just two quantum bits (qubits) to three, the incompatibilities between classical and quantum correlation properties can change from a violation of inequalities involving statistical averages to sign differences in deterministic observations. With the ample confirmation of quantum mechanical predictions by experiments, entanglement has evolved from a philosophical conundrum to a key resource for quantum-based technologies, like quantum cryptography and computation. In particular, maximal entanglement of more than two qubits is crucial to the implementation of quantum error correction protocols. While entanglement of up to 3, 5, and 8 qubits has been demonstrated among spins, photons, and ions, respectively, entanglement in engineered solid-state systems has been limited to two qubits. Here, we demonstrate three-qubit entanglement in a superconducting circuit, creating Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88%, measured with quantum state tomography. Several entanglement witnesses show violation of bi-separable bounds by 830\pm80%. Our entangling sequence realizes the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of encoding, decoding and error-correcting steps in a feedback loop will be the next milestone for quantum computing with integrated circuits.Comment: 7 pages, 4 figures, and Supplementary Information (4 figures)

    Molecular Characterization and Expression Pattern of Tripartite Motif Protein 39 in Gallus gallus with a Complete PRY/SPRY Domain

    Get PDF
    Members of tripartite motif (TRIM) proteins in mammals play important roles in multiple cellular processes in the immune system. In the present study we have obtained the chicken TRIM39 with the insertion of a base A at position 1006 bp, compared to the sequence in the NCBI database (Accession No: NM 001006196), which made TRIM39 fulfill the TRIM rule of domain composition with both PRY, and SPRY domains. The open reading frame consisted of 1392 bp encoding 463 amino acid residues. The amino acid sequences of TRIM39 protein in mammals were highly similar (from 91.48% to 99.61%), while chicken TRIM39 had relatively low homology with mammals (from 29.2% to 39.59%). Real time RT-PCR indicated that the mRNA expression level of TRIM39 was the highest in spleen, with a lower expression in liver, brain, and lung, suggesting it might be an important protein participating in the immune system
    • …
    corecore