139 research outputs found

    Rare germline variants in DNA repair genes and the angiogenesis pathway predispose prostate cancer patients to develop metastatic disease

    Get PDF
    Background Prostate cancer (PrCa) demonstrates a heterogeneous clinical presentation ranging from largely indolent to lethal. We sought to identify a signature of rare inherited variants that distinguishes between these two extreme phenotypes. Methods We sequenced germline whole exomes from 139 aggressive (metastatic, age of diagnosis < 60) and 141 non-aggressive (low clinical grade, age of diagnosis β‰₯60) PrCa cases. We conducted rare variant association analyses at gene and gene set levels using SKAT and Bayesian risk index techniques. GO term enrichment analysis was performed for genes with the highest differential burden of rare disruptive variants. Results Protein truncating variants (PTVs) in specific DNA repair genes were significantly overrepresented among patients with the aggressive phenotype, with BRCA2, ATM and NBN the most frequently mutated genes. Differential burden of rare variants was identified between metastatic and non-aggressive cases for several genes implicated in angiogenesis, conferring both deleterious and protective effects. Conclusions Inherited PTVs in several DNA repair genes distinguish aggressive from non-aggressive PrCa cases. Furthermore, inherited variants in genes with roles in angiogenesis may be potential predictors for risk of metastases. If validated in a larger dataset, these findings have potential for future clinical application

    Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study

    Get PDF
    Prostate cancer is the most common cancer in men in developed countries, and is a target for risk reduction strategies. The effects of alcohol consumption on prostate cancer incidence and survival remain unclear, potentially due to methodological limitations of observational studies. In this study, we investigated the associations of genetic variants in alcohol-metabolising genes with prostate cancer incidence and survival. We analysed data from 23,868 men with prostate cancer and 23,051 controls from 25 studies within the international PRACTICAL Consortium. Study-specific associations of 68 single nucleotide polymorphisms (SNPs) in 8 alcohol-metabolising genes (Alcohol Dehydrogenases (ADHs) and Aldehyde Dehydrogenases (ALDHs)) with prostate cancer diagnosis and prostate cancer-specific mortality, by grade, were assessed using logistic and Cox regression models, respectively. The data across the 25 studies were meta-analysed using fixed-effect and random-effects models. We found little evidence that variants in alcohol metabolising genes were associated with prostate cancer diagnosis. Four variants in two genes exceeded the multiple testing threshold for associations with prostate cancer mortality in fixed-effect meta-analyses. SNPs within ALDH1A2 associated with prostate cancer mortality were rs1441817 (fixed effects hazard ratio, HRfixed  = 0.78; 95% confidence interval (95%CI):0.66,0.91; p values = 0.002); rs12910509, HRfixed  = 0.76; 95%CI:0.64,0.91; p values = 0.003); and rs8041922 (HRfixed  = 0.76; 95%CI:0.64,0.91; p values = 0.002). These SNPs were in linkage disequilibrium with each other. In ALDH1B1, rs10973794 (HRfixed  = 1.43; 95%CI:1.14,1.79; p values = 0.002) was associated with prostate cancer mortality in men with low-grade prostate cancer. These results suggest that alcohol consumption is unlikely to affect prostate cancer incidence, but it may influence disease progression

    Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort

    Get PDF
    BACKGROUND: Epidemiological studies have observed a positive association between an earlier age at sexual development and prostate cancer, but markers of sexual maturation in boys are imprecise and observational estimates are likely to suffer from a degree of uncontrolled confounding. To obtain causal estimates, we examined the role of pubertal development in prostate cancer using genetic polymorphisms associated with Tanner stage in adolescent boys in a Mendelian randomization (MR) approach. METHODS: We derived a weighted genetic risk score for pubertal development, combining 13 SNPs associated with male Tanner stage. A higher score indicated a later puberty onset. We examined the association of this score with prostate cancer risk, stage and grade in the UK-based ProtecT case-control study (n = 2,927), and used the PRACTICAL consortium (n = 43,737) as a replication sample. RESULTS: In ProtecT, the puberty genetic score was inversely associated with prostate cancer grade (odds ratio (OR) of high- vs. low-grade cancer, per tertile of the score: 0.76; 95Β % CI, 0.64-0.89). In an instrumental variable estimation of the causal OR, later physical development in adolescence (equivalent to a difference of one Tanner stage between pubertal boys of the same age) was associated with a 77Β % (95Β % CI, 43-91Β %) reduced odds of high Gleason prostate cancer. In PRACTICAL, the puberty genetic score was associated with prostate cancer stage (OR of advanced vs. localized cancer, per tertile: 0.95; 95Β % CI, 0.91-1.00) and prostate cancer-specific mortality (hazard ratio amongst cases, per tertile: 0.94; 95Β % CI, 0.90-0.98), but not with disease grade. CONCLUSIONS: Older age at sexual maturation is causally linked to a reduced risk of later prostate cancer, especially aggressive disease

    Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort

    Get PDF
    Background: Epidemiological studies have observed a positive association between an earlier age at sexual development and prostate cancer, but markers of sexual maturation in boys are imprecise and observational estimates are likely to suffer from a degree of uncontrolled confounding. To obtain causal estimates, we examined the role of pubertal development in prostate cancer using genetic polymorphisms associated with Tanner stage in adolescent boys in a Mendelian randomization (MR) approach.Methods: We derived a weighted genetic risk score for pubertal development, combining 13 SNPs associated with male Tanner stage. A higher score indicated a later puberty onset. We examined the association of this score with prostate cancer risk, stage and grade in the UK-based ProtecT case-control study (n = 2,927), and used the PRACTICAL consortium (n = 43,737) as a replication sample.Results: In ProtecT, the puberty genetic score was inversely associated with prostate cancer grade (odds ratio (OR) of high-vs. low-grade cancer, per tertile of the score: 0.76; 95 % CI, 0.64-0.89). In an instrumental variable estimation of the causal OR, later physical development in adolescence (equivalent to a difference of one Tanner stage between pubertal boys of the same age) was associated with a 77 % (95 % CI, 43-91 %) reduced odds of high Gleason prostate cancer. In PRACTICAL, the puberty genetic score was associated with prostate cancer stage (OR of advanced vs. localized cancer, per tertile: 0.95; 95 % CI, 0.91-1.00) and prostate cancer-specific mortality (hazard ratio amongst cases, per tertile: 0.94; 95 % CI, 0.90-0.98), but not with disease grade.Conclusions: Older age at sexual maturation is causally linked to a reduced risk of later prostate cancer, especially aggressive disease

    The genomic evolution of human prostate cancer.

    Get PDF
    Prostate cancers are highly prevalent in the developed world, with inheritable risk contributing appreciably to tumour development. Genomic heterogeneity within individual prostate glands and between patients derives predominantly from structural variants and copy-number aberrations. Subtypes of prostate cancers are being delineated through the increasing use of next-generation sequencing, but these subtypes are yet to be used to guide the prognosis or therapeutic strategy. Herein, we review our current knowledge of the mutational landscape of human prostate cancer, describing what is known of the common mutations underpinning its development. We evaluate recurrent prostate-specific mutations prior to discussing the mutational events that are shared both in prostate cancer and across multiple cancer types. From these data, we construct a putative overview of the genomic evolution of human prostate cancer

    Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium.

    Get PDF
    BACKGROUND: Prostate cancer is a common cancer worldwide with no established modifiable lifestyle factors to guide prevention. The associations between polyunsaturated fatty acids (PUFAs) and prostate cancer risk have been inconsistent. Using Mendelian randomisation, we evaluated associations between PUFAs and prostate cancer risk. METHODS: We used individual-level data from a consortium of 22 721 cases and 23 034 controls of European ancestry. Externally-weighted PUFA-specific polygenic risk scores (wPRSs), with explanatory variation ranging from 0.65 to 33.07%, were constructed and used to evaluate associations with prostate cancer risk per one standard deviation (s.d.) increase in genetically-predicted plasma PUFA levels using multivariable-adjusted unconditional logistic regression. RESULTS: No overall association was observed between the genetically-predicted PUFAs evaluated in this study and prostate cancer risk. However, risk reductions were observed for short-chain PUFAs, linoleic (ORLA=0.95, 95%CI=0.92, 0.98) and Ξ±-linolenic acids (ORALA=0.96, 95%CI=0.93, 0.98), among men <62 years; whereas increased risk was found among men β©Ύ62 years for LA (ORLA=1.04, 95%CI=1.01, 1.07). For long-chain PUFAs (i.e., arachidonic, eicosapentaenoic, and docosapentaenoic acids), increased risks were observed among men <62 years (ORAA=1.05, 95%CI=1.02, 1.08; OREPA=1.04, 95%CI=1.01, 1.06; ORDPA=1.05, 95%CI=1.02, 1.08). CONCLUSION: Results from this study suggest that circulating Ο‰-3 and Ο‰-6 PUFAs may have a different role in the aetiology of early- and late-onset prostate cancer

    Polygenic susceptibility to prostate and breast cancer: implications for personalised screening

    Get PDF
    BACKGROUND: We modelled the efficiency of a personalised approach to screening for prostate and breast cancer based on age and polygenic risk-profile compared with the standard approach based on age alone.METHODS: We compared the number of cases potentially detectable by screening in a population undergoing personalised screening with a population undergoing screening based on age alone. Polygenic disease risk was assumed to have a log-normal relative risk distribution predicted for the currently known prostate or breast cancer susceptibility variants (N = 31 and N = 18, respectively).RESULTS: Compared with screening men based on age alone (aged 55-79: 10-year absolute risk >= 2%), personalised screening of men age 45-79 at the same risk threshold would result in 16% fewer men being eligible for screening at a cost of 3% fewer screen-detectable cases, but with added benefit of detecting additional cases in younger men at high risk. Similarly, compared with screening women based on age alone (aged 47-79: 10-year absolute risk >= 2.5%), personalised screening of women age 35-79 at the same risk threshold would result in 24% fewer women being eligible for screening at a cost of 14% fewer screen-detectable cases.CONCLUSION: Personalised screening approach could improve the efficiency of screening programmes. This has potential implications on informing public health policy on cancer screening. British Journal of Cancer (2011) 104, 1656 -1663. doi: 10.1038/bjc.2011.118 www.bjcancer.com Published online 5 April 2011 (C) 2011 Cancer Research U

    A risk prediction algorithm based on family history and common genetic variants: application to prostate cancer with potential clinical impact.

    Get PDF
    Genome wide association studies have identified several single nucleotide polymorphisms (SNPs) that are independently associated with small increments in risk of prostate cancer, opening up the possibility for using such variants in risk prediction. Using segregation analysis of population-based samples of 4,390 families of prostate cancer patients from the UK and Australia, and assuming all familial aggregation has genetic causes, we previously found that the best model for the genetic susceptibility to prostate cancer was a mixed model of inheritance that included both a recessive major gene component and a polygenic component (P) that represents the effect of a large number of genetic variants each of small effect, where . Based on published studies of 26 SNPs that are currently known to be associated with prostate cancer, we have extended our model to incorporate these SNPs by decomposing the polygenic component into two parts: a polygenic component due to the known susceptibility SNPs, , and the residual polygenic component due to the postulated but as yet unknown genetic variants, . The resulting algorithm can be used for predicting the probability of developing prostate cancer in the future based on both SNP profiles and explicit family history information. This approach can be applied to other diseases for which population-based family data and established risk variants exist
    • …
    corecore