15 research outputs found

    Microstructure and mechanical properties of IF steel deformed during plane stress local torsion

    Get PDF
    Mechanical joints are inherently vulnerable to failure because the presence of the joint hole causes a stress concentration in the vicinity of the hole. The need for improvement of material strength around a fastener hole can be satisfied by severe plastic deformation (SPD) to produce ultrafine grains. The ultrafine grained (UFG) alloys produced by SPD processing possess higher strengths than their coarse-grained counterparts as a result of the reduced grain size. However, in some circumstances such as SPD processing of Al-Zn and Al-Mg alloys the decomposition of supersaturated solid solutions competes with the Hall-Petch effect and leads to a more pronounced softening of the material [1]. Another drawback of SPD processes is that they involve bulk deformation and large energy consumption [2]. It is therefore desirable to enhance the global behaviour of the material by limiting improvement of the material property by SPD to the location at which it is needed. Localized severe plastic deformation (LSPD) techniques, such as forward spiral extrusion [3] and friction stir processing [4], involve lower energy consumption. They modify the properties of materials locally and create a gradient of grain refinement, resulting in significant improvement in the mechanical properties of the processed samples. However, these techniques cannot be used for strengthening the material around fastener holes, and thus a method for improving the strength of material around the hole is needed. To reinforce the mechanical properties of material around a hole, the plane stress local torsion (PSLT) process, which involves a plane stress axi-symmetric torsional loading, is introduced. The PSLT takes advantage of large shearing strains induced around the intended hole position, through torsional deformation [5]. As a result, the material flows plastically within a thin annular zone around the fastener hole (AZFH). Because of the limited penetration of the flow localization zone into the material, a major proportion of deformation energy is consumed within the AZFH. The PSLT therefore consumes much less energy than do bulk grain refinement techniques

    Interpretation of hardness evolution in metals processed by high-pressure torsion

    No full text
    The processing of metals through the application of high-pressure torsion (HPT) provides the potential for achieving exceptional grain refinement in bulk disks. Numerous reports are now available describing the application of HPT to a range of pure metals and simple alloys. Excellent grain refinement was achieved using this processing technique with the average grain size often reduced to the nanoscale range. By contrast, the development of microstructure and local hardness is different depending upon the material properties. In order to make HPT processing more practical, it is indispensable to investigate the nature of the sample characteristics immediately after conventional HPT processing. Accordingly, this report demonstrates the different models of hardness evolution using representative materials of AZ31 magnesium alloy, high-purity aluminum, and Znā€“22 % Al eutectoid alloy processed by HPT. Separate models are described for the evolution of hardness with equivalent strain, and the correlation between these models is suggested by the homologous temperature of HPT processing. A special emphasis is placed on examining the numerical expression of the level of strain hardening or softening of these metals with increasing equivalent strai

    Calorimetric investigation of Alā€“Zn alloys using Oelsen method

    No full text
    The results of calorimetric study of binary Al-Zn system done according to the Oelsen thermodynamic method are presented in this paper. Main thermodynamic properties, including activities, activity coefficients, partial/integral molar Gibbs excess, and mixing energies were determined at 1,000 K. Positive deviation from Raoult law was noticed, with minimal values of Delta G (M) about -3 kJ mol(-1) and maximal values of Delta G (E) about +2 kJ mol(-1). The energetics of mixing in liquid Al-Zn alloys has been analyzed through the study of concentration fluctuation in the long-wavelength limit, and weak affinity between Al and Zn atoms in the system was observed. Differential thermal analysis and light optic microscopy were applied in the frame of characterization of investigated binary alloys and phase diagram examination, and the results obtained were in accordance with available literature data
    corecore