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Abstract 

A novel localized severe plastic deformation process for reinforcement of fastener holes is presented. 

This process is capable of inducing large shearing strains confined to an axi-symmetric zone around a 

hole. The process was applied to thin interstitial free steel samples. In the material around the hole, 

significant grain refinement was achieved, and a gradient of refinement was observed moving away from 

the hole. The ultimate and yield strengths were increased by 28% and 100% respectively.  

Keywords: Severe plastic deformation (SPD); Grain refinement; Local torsion; Microstructure; 

Interstitial free (IF) steel 

1. Introduction 

Mechanical joints are inherently vulnerable to failure because the presence of the joint hole causes a 

stress concentration in the vicinity of the hole. The need for improvement of material strength around a 

fastener hole can be satisfied by severe plastic deformation (SPD) to produce ultrafine grains. The ultra-

fine grained (UFG) alloys produced by SPD processing possess higher strengths than their coarse-grained 

counterparts as a result of the reduced grain size. However, in some circumstances such as SPD 

processing of Al-Zn and Al-Mg alloys the decomposition of supersaturated solid solutions competes with 

the Hall-Petch effect and leads to a more pronounced softening of the material [1]. Another drawback of 

SPD processes is that they involve bulk deformation and large energy consumption [2]. It is therefore 

desirable to enhance the global behaviour of the material by limiting improvement of the material 

property by SPD to the location at which it is needed. Localized severe plastic deformation (LSPD) 

techniques, such as forward spiral extrusion [3] and friction stir processing [4], involve lower energy 
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consumption. They modify the properties of materials locally and create a gradient of grain refinement, 

resulting in significant improvement in the mechanical properties of the processed samples. However, 

these techniques cannot be used for strengthening the material around fastener holes, and thus a method 

for improving the strength of material around the hole is needed. 

To reinforce the mechanical properties of material around a hole, the plane stress local torsion (PSLT) 

process, which involves a plane stress axi-symmetric torsional loading, is introduced. The PSLT takes 

advantage of large shearing strains induced around the intended hole position, through torsional 

deformation [5]. As a result, the material flows plastically within a thin annular zone around the fastener 

hole (AZFH). Because of the limited penetration of the flow localization zone into the material, a major 

proportion of deformation energy is consumed within the AZFH. The PSLT therefore consumes much 

less energy than do bulk grain refinement techniques.  

2. Principles of the PSLT  

In the case of a thick-walled cylinder subject to a shearing load on its inner surface, the plastic shear 

strain,    , in the zone surrounding the hole can be calculated using a tangential displacement correlation 

given in [6]: 

    
      

     
 

         

 
 (1) 

where   is the distance from the centre of the hole,   is Young’s modulus,   is Poisson’s ratio,   is a 

constant assuming the material hardens isotropically,            is the radius of elastic-plastic 

interface),   is the applied torque per unit thickness, and     is the yield stress in shear. According to Eq. 

(1) above, the shear strain is the sum of two terms, the first inversely proportional to   , the second 

inversely proportional to        . Which term dominates depends on geometrical and material parameters, 

but it can be expected that the first dominates at sufficiently small   (for small holes), whereas the second 

dominates at greater radii. The logarithmic distribution of strain and its inverse proportionality to  , 

suggests gradation in the radial direction, producing a zone of intense grain refinement and enhanced 

mechanical properties, declining to a more diffuse change, which confers an advantage of PSLT over 

other SPD methods.  

The process of PSLT is implemented using a rig developed in-house (Fig. 1(a)). In the PSLT process, 

a thin plate specimen (Fig. 1(b)) is treated locally, before hole drilling. A built-in mandrel, which is a part 

of the specimen, applies the torque at the intended hole position. A socket head which is held by a three-
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jaw chuck (Fig. 1(a)) transfers the torque through the mandrel to the specimen. The confining die, which 

holds the specimen, is positioned in a fixture plate and keeps the specimen stationary at its external 

boundary during the process (Fig. 1(b)).  

The PSLT was applied to deform Ti-IF (interstitial free) steel specimens having a thickness of 1 mm 

and an intended hole diameter of 10 mm in the centre. The required torque was applied with the input 

power of 0.108 kW and rotation rate of 0.0087 rad/s. The torque and angle of rotation was monitored 

during the test and continued until it dropped sharply (an indication of macro-crack initiation). The 

plastically deformed zone can serve as a reinforced fastener hole after machining the mandrel and drilling 

a 10 mm hole concentric with the AZFH. As depicted in Fig. 2, a torque of 49 Nm was required to twist 

the material within the AZFH through 110 degrees, which corresponds to a strain of       at the edge 

of the intended hole. 

To characterize the extension of the plastically deformed zone visually, the surface of the sample was 

gridded and the grids were measured after the sample was deformed to failure. The initially-radial grids 

on the specimen were distorted after deformation within a limited distance from the edge of the hole 

where the polished surface of the specimen became irregular. 

3. Results and discussion 

The micro shear punch (MSP) test was used to evaluate the improvement in mechanical strength of 

the deformed zone. In the MSP test, the ultimate strength of the material is estimated from the maximum 

point on the force-displacement curve [7]. MSP tests were performed within plastically deformed and 

undeformed zones of the specimen at a speed of 0.004 mm/s. The resultant force-displacement curves, as 

illustrated in Fig. 3, were recorded using dedicated data acquisition software.  

The difference between the peak load for the deformed region (1548 N) and that for the un-deformed 

region (1214 N) indicates approximately an improvement of 28% in the ultimate strength within the 

AZFH. Due to the large and nonlinear gradient of deformation and grain refinement within the AZFH, 

and a relatively large footprint of 1.5 mm in diameter of the micro shear punch, the 28% improvement 

should be interpreted carefully. Given that only a small portion of the punch boundary would be in the 

maximum grain refinement zone, it is concluded that the improvement in the zone would be significantly 

higher than 28%. In both curves, the gradual reduction in the shear force after the peak point indicates 

ductile fracture of the specimen. Fracture behaviour of IF steel could be affected by the PSLT processing 

as a result of reduction in the grain sizes similar to bcc metals under high pressure torsion [8]. 
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In addition to the MSP test, microhardness tests were used to investigate the influence of the PSLT 

process on the specimen. There is a linear correlation between microhardness and yield strength over data 

in a limited range [9]. The microhardness tests were performed at five points and the measured hardness 

(HV) values as a function of distance from the hole edge,            are reported in Table 1. By 

extrapolating and comparing hardness values at      = 0.05 and 8 mm, an increase of nearly 100% in 

the yield strength of the material was found. The result of the microhardness test showed a radial increase 

in mechanical strength, as suggested by Eq. 1. 

Moreover, the microstructure of the specimens tested was examined by optical microscopy (OM). 

Samples were cut and prepared at the     plane (see Fig. 1(b)). As shown in Fig. 4(a), the grains 

outside the deformed zone were equi-axed. In Fig. 4(b), a narrow band of quite severely-refined grains 

about 300µm wide near the edge of the hole, in a pure shearing deformation mode, can be distinguished 

from the rest of the material. In this heavily deformed region, where the shear strain is substantially 

raised, the distribution of shear strain is heterogeneous which is typical for most SPD processes involving 

large shearing deformations [10]. The heterogeneity is reduced as moving away from the edge of the hole 

in the radial direction. The OM results also suggest that the shear deformation is more efficiently enforced 

on the material closer to the edge of the intended hole. Fig. 4(b) shows the gradient in the accumulated 

strain and grain size in the sample, which correlates with the gradient in mechanical properties measured 

by MSP tests and microhardness.  

Flow localization through the formation of shear bands, where the energy of deformation is 

accumulated, can be observed in the areas of prevailing microstructural refinement as shown in Fig. 4(c). 

Fig. 4(c) shows the shape and orientation of the grains within the plastically deformed zone. The heavy 

deformation of material and very large strains induce a fine grain structure very close to the edge of the 

hole. Grains are elongated in the tangential direction,  , and thinned in the transverse direction,  . The 

microstructure of the material very close to the edge of the hole appears fibrous and complex flow 

patterns could be present due to the local shear deformation gradients [11]. The gradient of the grain 

refinement in the   direction was negligible due to the small thickness of the specimen. 

Grain sizes expressed in terms of the width ( ) in the   direction and height ( ) in the   direction, 

and the grain aspect ratio,       , are shown in Table 2 as a function of          . The values 

shown in the table are the average of five measurements at each distance from the edge of the hole. As 

shown in Table 2, the aspect ratio of grains increases as the distance from the edge of the hole decreases. 
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The large aspect ratio of grains very close to the hole correlates with the elongation of grains in the 

tangential direction. Extrapolating the data given in Table 2 indicates that grains located at the edge of the 

hole are expected to have an aspect ratio of approximately 15. 

The PSLT process showed a strong grain refinement in the heavily deformed area, close to the edge of 

the hole. The grain refinement reduced rapidly toward the external edge of the sample up to 4mm from 

the hole edge. The EBSD maps (Figs 5(a) and (b)) show a typical example of microstructure obtained in 

the heavily deformed and less deformed areas of the specimen respectively. This microstructure is a 

composite structure of ultrafine grains of 0.2-0.5 µm together with larger and elongated grains. The 

presence of such a heterogeneous grain refinement is expected in many deformation processes and 

depends somewhat on the grains crystallographic orientation (prior to deformation). However, a 

considerable improvement in the mechanical properties is expected accompanying grain refinement by 

development of sub-micron grains and/or subgrains as shown in the EBSD map of material in the 

deformed zone (Fig. 6).  

As shown in Fig. 6, the severe plastic deformation during the PSLT process has introduced high angle 

grain boundaries (HAGB), misorientation ≥15 degrees, as well as the low angle grain boundaries 

(LAGB), misorientation < 2 degrees, in the microstructure, which are distinguished by black and red lines 

respectively. The ultrafine and elongated grains with the HAGBs in the microstructure impede the motion 

of dislocations and consequently enhance the strength. Other deformation mechanisms such as grain 

boundary sliding and grain rotation may also be facilitated by the HAGBs [12]. Fig. 6 clearly shows the 

presence of a relatively well defined and sub-micron size low-angle grain boundary network within the 

elongated grains. The presence of such a low angle grain boundaries network (sub-boundaries) could also 

improve the mechanical properties of the material. 

As shown in EBSD maps, the presence of the ultrafine grain structure within the AZFH facilitates the 

strain hardening of the material and causes a delay in occurrence of the plastic instability which leads to 

continuous flow of the material. Moreover, the HAGBs of the ultra-fine grains generated by the PSLT 

method, as a SPD process, are usually in a non-equilibrium state [13]. These grain boundaries provide a 

higher density of dislocations for slip and slide of grains compared to LAGBs. Movement of these 

dislocations and the dislocations piled up close to the grain boundaries facilitate the grain boundary 

sliding and the grain rotation resulting in an increase in the formability [13-15]. In the areas of high shear 

strain the availability of a bimodal microstructure (a mixture of grains with varying size and properties) 
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including ultra-fine grains along with elongated ones can be observed [16]. The strengthening from the 

ultrafine grain structure, with a grain size of less than 1 µm, together with increased formability provided 

by dislocation activity in larger grains conduces to an optimal state of high strength and acceptable 

formability within the AZFH.  

4. Conclusions 

In conclusion, a new process, plane stress local torsion (PSLT), has been proposed which can induce 

large plastic shearing strains within the material adjacent to a hole. An overall increase of approximately 

100% in yield strength and 28% in ultimate strength of the material in the flow-localized zone over the 

punched zone has been demonstrated. Investigation of the microstructure of the material and its 

microhardness confirmed the gradient of grain refinement in the radial direction. The microstructure also 

showed highly elongated and refined grains in the flow localization zone. The ultrafine grain boundaries, 

as an effective source of dislocations, together with a bimodal distribution of grain sizes, provide possible 

means to increase strength and formability in the ultrafine grained Ti-IF steel processed by PSLT. A 

major advantage of PSLT is its ability to concentrate grain refinement around an intended hole position, 

which makes PSLT a more flexible and versatile process that requires less energy consumption. A 

potential application for PSLT is local reinforcement of fastener holes which are extensively used in 

mechanical structures.  
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(a) 

 
(b) 

Figure 1. Schematic view of the experimental PSLT setup, (a) PSLT apparatus and (b) specimen fixture 

assembly 

 

 

 

Figure 2. Torque-twist curve of IF steel with intended hole diameter of 10 mm 
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Figure 3. Shear force-displacement of IF steel for deformed and undeformed regions 

 

 

 

  
(a) (b) 

 
(c) 

Figure 4. Metallographic pictures of Ti-IF steel specimen processed by PSLT. Photos (a-c) are in the 

    plane at      
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(a) (b) 

Figure 5. EBSD maps from the heavily deformed zone of the specimen (a) very close to the edge of the 

hole, and (b) farther from edge of the hole 

 

 
Figure 6. EBSD map of the heavily deformed zone showing high angle and low angle grain boundaries 

(red line: low angle grain boundaries (<2
o
), black line: high angle grain boundaries (>15

o
) 
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