12 research outputs found

    Conditioned stochastic particle systems and integrable quantum spin systems

    Full text link
    We consider from a microscopic perspective large deviation properties of several stochastic interacting particle systems, using their mapping to integrable quantum spin systems. A brief review of recent work is given and several new results are presented: (i) For the general disordered symmectric exclusion process (SEP) on some finite lattice conditioned on no jumps into some absorbing sublattice and with initial Bernoulli product measure with density ρ\rho we prove that the probability Sρ(t)S_\rho(t) of no absorption event up to microscopic time tt can be expressed in terms of the generating function for the particle number of a SEP with particle injection and empty initial lattice. Specifically, for the symmetric simple exclusion process on Z\mathbb Z conditioned on no jumps into the origin we obtain the explicit first and second order expansion in ρ\rho of Sρ(t)S_\rho(t) and also to first order in ρ\rho the optimal microscopic density profile under this conditioning. For the disordered ASEP on the finite torus conditioned on a very large current we show that the effective dynamics that optimally realizes this rare event does not depend on the disorder, except for the time scale. For annihilating and coalescing random walkers we obtain the generating function of the number of annihilated particles up to time tt, which turns out to exhibit some universal features.Comment: 25 page
    corecore