24 research outputs found

    Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis

    Get PDF
    Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP3R) serve to discharge Ca2+ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP3R isoforms and protect cells from apoptosis, reducing ER Ca2+ release. However, it has not been elucidated which IP3R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP3R I, strongly suppresses IP3-mediated Ca2+ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca2+ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca2+ release. Moreover, regulating Ca2+ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP3R III, leading to diminished Ca2+ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt

    Lithium Improves Hippocampal Neurogenesis, Neuropathology and Cognitive Functions in APP Mutant Mice

    Get PDF
    Background: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular b-amyloid (Ab) plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD. Methodology/Principal Findings: The double transgenic (Tg) CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3b and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium’s ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines a

    Fluorescent Labeling of Newborn Dentate Granule Cells in GAD67-GFP Transgenic Mice: A Genetic Tool for the Study of Adult Neurogenesis

    Get PDF
    Neurogenesis in the adult hippocampus is an important form of structural plasticity in the brain. Here we report a line of BAC transgenic mice (GAD67-GFP mice) that selectively and transitorily express GFP in newborn dentate granule cells of the adult hippocampus. These GFP+ cells show a high degree of colocalization with BrdU-labeled nuclei one week after BrdU injection and express the newborn neuron marker doublecortin and PSA-NCAM. Compared to mature dentate granule cells, these newborn neurons show immature morphological features: dendritic beading, fewer dendritic branches and spines. These GFP+ newborn neurons also show immature electrophysiological properties: higher input resistance, more depolarized resting membrane potentials, small and non-typical action potentials. The bright labeling of newborn neurons with GFP makes it possible to visualize the details of dendrites, which reach the outer edge of the molecular layer, and their axon (mossy fiber) terminals, which project to the CA3 region where they form synaptic boutons. GFP expression covers the whole developmental stage of newborn neurons, beginning within the first week of cell division and disappearing as newborn neurons mature, about 4 weeks postmitotic. Thus, the GAD67-GFP transgenic mice provide a useful genetic tool for studying the development and regulation of newborn dentate granule cells

    Control of adult neurogenesis by programmed cell death in the mammalian brain

    Full text link

    Lifileucel, a Tumor-Infiltrating Lymphocyte Therapy, in Metastatic Melanoma.

    No full text
    Purpose Effective treatment options are limited for patients with advanced (metastatic or unresectable) melanoma who progress after immune checkpoint inhibitors and targeted therapies. Adoptive cell therapy using tumor-infiltrating lymphocytes has demonstrated efficacy in advanced melanoma. Lifileucel is an autologous, centrally manufactured tumor-infiltrating lymphocyte product.Methods We conducted a phase II open-label, single-arm, multicenter study in patients with advanced melanoma who had been previously treated with checkpoint inhibitor(s) and BRAF ± MEK targeted agents. Lifileucel was produced from harvested tumor specimens in central Good Manufacturing Practice facilities using a streamlined 22-day process. Patients received a nonmyeloablative lymphodepletion regimen, a single infusion of lifileucel, and up to six doses of high-dose interleukin-2. The primary end point was investigator-assessed objective response rate (ORR) per RECIST, version 1.1.Results Sixty-six patients received a mean of 3.3 prior therapies (anti-programmed death 1 [PD-1] or programmed death ligand 1 [PD-L1]: 100%; anticytotoxic T-lymphocyte-associated protein-4: 80%; BRAF ± MEK inhibitor: 23%). The ORR was 36% (95% CI, 25 to 49), with two complete responses and 22 partial responses. Disease control rate was 80% (95% CI, 69 to 89). Median duration of response was not reached after 18.7-month median study follow-up (range, 0.2-34.1 months). In the primary refractory to anti-PD-1 or PD-L1 therapy subset, the ORR and disease control rate were 41% (95% CI, 26 to 57) and 81% (95% CI, 66 to 91), respectively. Safety profile was consistent with known adverse events associated with nonmyeloablative lymphodepletion and interleukin-2.Conclusion Lifileucel demonstrated durable responses and addresses a major unmet need in patients with metastatic melanoma with limited treatment options after approved therapy, including the primary refractory to anti-PD-1 or PD-L1 therapy subset

    New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance

    No full text
    Chondrosarcomas are cartilage-forming, poorly vascularized tumors. They represent the second malignant primary bone tumor of adults after osteosarcoma, but in contrast to osteosarcoma they are resistant to chemotherapy and radiotherapy, surgical excision remaining the only therapeutic option. Few cell lines and animal models are available, and the mechanisms behind their chemoresistance remain largely unknown. Our goal was to establish new cell lines and animal cancer models from human chondrosarcoma biopsies to study their chemoresistance. Between 2007 and 2012, 10 chondrosarcoma biopsies were collected and used for cell culture and transplantation into nude mice. Only one transplanted biopsy and one injected cell line has engrafted successfully leading to conventional central high-grade chondrosarcoma similar to the original biopsies. In culture, two new stable cell lines were obtained, one from a dedifferentiated and one from a grade III conventional central chondrosarcoma biopsy. Their genetic characterization revealed triploid karyotypes, mutations in IDH1, IDH2, and TP53, deletion in CDKN2A and/or MDM2 amplification. These cell lines expressed mesenchymal membrane markers (CD44, 73, 90, 105) and were able to produce a hyaline cartilaginous matrix when cultured in chondrogenic three-dimensional (3D) pellets. Using a high-throughput quantitative RT-PCR approach, we observed that cell lines cultured in monolayer had lost expression of several genes implicated in cartilage development (COL2A1, COMP, ACAN) but restored their expression in 3D cultures. Chondrosarcoma cells in monolayer were sensitive to several conventional chemotherapeutic agents but became resistant to low doses of mafosfamide or doxorubicin when cultured in 3D pellets, in parallel with an altered nucleic accumulation of the drug. Our results indicate that the cartilaginous matrix produced by chondrosarcoma cells may impair diffusion of several drugs and thus contribute to chemoresistance. Therefore, 3D chondrogenic cell pellets constitute a more relevant model to study chondrosarcoma chemoresistance and may be a valuable alternative to animal experimentations
    corecore