63 research outputs found

    Domain Altering SNPs in the Human Proteome and Their Impact on Signaling Pathways

    Get PDF
    Single nucleotide polymorphisms (SNPs) constitute an important mode of genetic variations observed in the human genome. A small fraction of SNPs, about four thousand out of the ten million, has been associated with genetic disorders and complex diseases. The present study focuses on SNPs that fall on protein domains, 3D structures that facilitate connectivity of proteins in cell signaling and metabolic pathways. We scanned the human proteome using the PROSITE web tool and identified proteins with SNP containing domains. We showed that SNPs that fall on protein domains are highly statistically enriched among SNPs linked to hereditary disorders and complex diseases. Proteins whose domains are dramatically altered by the presence of an SNP are even more likely to be present among proteins linked to hereditary disorders. Proteins with domain-altering SNPs comprise highly connected nodes in cellular pathways such as the focal adhesion, the axon guidance pathway and the autoimmune disease pathways. Statistical enrichment of domain/motif signatures in interacting protein pairs indicates extensive loss of connectivity of cell signaling pathways due to domain-altering SNPs, potentially leading to hereditary disorders

    Dr. PIAS: an integrative system for assessing the druggability of protein-protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amount of data on protein-protein interactions (PPIs) available in public databases and in the literature has rapidly expanded in recent years. PPI data can provide useful information for researchers in pharmacology and medicine as well as those in interactome studies. There is urgent need for a novel methodology or software allowing the efficient utilization of PPI data in pharmacology and medicine.</p> <p>Results</p> <p>To address this need, we have developed the 'Druggable Protein-protein Interaction Assessment System' (Dr. PIAS). Dr. PIAS has a meta-database that stores various types of information (tertiary structures, drugs/chemicals, and biological functions associated with PPIs) retrieved from public sources. By integrating this information, Dr. PIAS assesses whether a PPI is druggable as a target for small chemical ligands by using a supervised machine-learning method, support vector machine (SVM). Dr. PIAS holds not only known druggable PPIs but also all PPIs of human, mouse, rat, and human immunodeficiency virus (HIV) proteins identified to date.</p> <p>Conclusions</p> <p>The design concept of Dr. PIAS is distinct from other published PPI databases in that it focuses on selecting the PPIs most likely to make good drug targets, rather than merely collecting PPI data.</p

    KB-Rank: efficient protein structure and functional annotation identification via text query

    Get PDF
    The KB-Rank tool was developed to help determine the functions of proteins. A user provides text query and protein structures are retrieved together with their functional annotation categories. Structures and annotation categories are ranked according to their estimated relevance to the queried text. The algorithm for ranking first retrieves matches between the query text and the text fields associated with the structures. The structures are next ordered by their relative content of annotations that are found to be prevalent across all the structures retrieved. An interactive web interface was implemented to navigate and interpret the relevance of the structures and annotation categories retrieved by a given search. The aim of the KB-Rank tool is to provide a means to quickly identify protein structures of interest and the annotations most relevant to the queries posed by a user. Informational and navigational searches regarding disease topics are described to illustrate the tool’s utilities. The tool is available at the URL http://protein.tcmedc.org/KB-Rank

    Correlated Mutations: A Hallmark of Phenotypic Amino Acid Substitutions

    Get PDF
    Point mutations resulting in the substitution of a single amino acid can cause severe functional consequences, but can also be completely harmless. Understanding what determines the phenotypical impact is important both for planning targeted mutation experiments in the laboratory and for analyzing naturally occurring mutations found in patients. Common wisdom suggests using the extent of evolutionary conservation of a residue or a sequence motif as an indicator of its functional importance and thus vulnerability in case of mutation. In this work, we put forward the hypothesis that in addition to conservation, co-evolution of residues in a protein influences the likelihood of a residue to be functionally important and thus associated with disease. While the basic idea of a relation between co-evolution and functional sites has been explored before, we have conducted the first systematic and comprehensive analysis of point mutations causing disease in humans with respect to correlated mutations. We included 14,211 distinct positions with known disease-causing point mutations in 1,153 human proteins in our analysis. Our data show that (1) correlated positions are significantly more likely to be disease-associated than expected by chance, and that (2) this signal cannot be explained by conservation patterns of individual sequence positions. Although correlated residues have primarily been used to predict contact sites, our data are in agreement with previous observations that (3) many such correlations do not relate to physical contacts between amino acid residues. Access to our analysis results are provided at http://webclu.bio.wzw.tum.de/~pagel/supplements/correlated-positions/

    Increased de novo copy number variants in the offspring of older males

    Get PDF
    The offspring of older fathers have an increased risk of neurodevelopmental disorders, such as schizophrenia and autism. In light of the evidence implicating copy number variants (CNVs) with schizophrenia and autism, we used a mouse model to explore the hypothesis that the offspring of older males have an increased risk of de novo CNVs. C57BL/6J sires that were 3- and 12–16-months old were mated with 3-month-old dams to create control offspring and offspring of old sires, respectively. Applying genome-wide microarray screening technology, 7 distinct CNVs were identified in a set of 12 offspring and their parents. Competitive quantitative PCR confirmed these CNVs in the original set and also established their frequency in an independent set of 77 offspring and their parents. On the basis of the combined samples, six de novo CNVs were detected in the offspring of older sires, whereas none were detected in the control group. Two of the CNVs were associated with behavioral and/or neuroanatomical phenotypic features. One of the de novo CNVs involved Auts2 (autism susceptibility candidate 2), and other CNVs included genes linked to schizophrenia, autism and brain development. This is the first experimental demonstration that the offspring of older males have an increased risk of de novo CNVs. Our results support the hypothesis that the offspring of older fathers have an increased risk of neurodevelopmental disorders such as schizophrenia and autism by generation of de novo CNVs in the male germline

    Human Cancer Protein-Protein Interaction Network: A Structural Perspective

    Get PDF
    Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network). The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%). We illustrate the interface related affinity properties of two cancer-related hub proteins: Erbb3, a multi interface, and Raf1, a single interface hub. The results reveal that affinity of interactions of the multi-interface hub tends to be higher than that of the single-interface hub. These findings might be important in obtaining new targets in cancer as well as finding the details of specific binding regions of putative cancer drug candidates
    • …
    corecore