22 research outputs found

    Dienone–phenol rearrangement

    No full text

    Lithium-oxygen batteries and related systems: potential, status, and future

    No full text
    The goal of limiting global warming to 1.5 C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal-air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal-air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li-O2 cells but include Na-O2, K-O2, and Mg-O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li-O2 cells

    Lithium-oxygen batteries and related systems: Potential, status, and future

    Get PDF
    The goal of limiting global warming to 1.5 °C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal–air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal–air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li–O2 cells but include Na–O2, K–O2, and Mg–O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li–O2 cells

    Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination

    No full text
    The manufacture of a range of bulk and fine chemicals, including flame retardants, disinfectants and antibacterial and antiviral drugs, involves bromination1. Conventional bromination methods typically use elemental bromine, a pollutant and a safety and health hazard. Attempts to develop alternative and more benign strategies have been inspired by haloperoxidase enzymes, which achieve selective halogenation at room temperature and nearly neutral pH by oxidizing inorganic halides with hydrogen peroxide2,3. The enzyme vanadium bromoperoxidase has attracted particular interest4,5 in this regard, and several homogeneous inorganic catalysts mimicking its activity are available6, 7, 8, 9, 10, 11, although they are limited by the requirement for strongly acidic reaction media. A heterogenous mimic operating at neutral pH has also been reported12, but shows only modest catalytic activity. Here we describe a tungstate-exchanged layered double hydroxide that catalyses oxidative bromination and bromide-assisted epoxidation reactions in a selective manner. We find that the catalyst is over 100 times more active than its homogeneous analogue. The low cost and heterogeneous character of this system, together with its ability to operate efficiently under mild conditions using bromides rather than elemental bromine, raise the prospect of being able to develop a clean and efficient industrial route to brominated chemicals and drugs and epoxide intermediates.info:eu-repo/semantics/publishe

    Seeking Recognition: Women’s Struggle for Full Citizenship in the Community of Religious Worship

    No full text
    This chapter addresses the struggle of religiously observant women in the United States to participate in public prayer. It focuses on two small but highly visible religions: Islam and Judaism. Within each group, a few earnestly follow religious law. Among these only a small fraction are feminists—religious devotees who adhere to their respective religious laws and yet aim to fi nd ways to reconcile these laws with principles of inclusion and equal citizenship for men and women. The traditional regulation of public prayer, in both Islam and Judaism, has either excluded women or delegated them to a marginal role

    Basics of Photodynamic Therapy (PDT)

    No full text
    corecore