18 research outputs found

    Spike train statistics for consonant and dissonant musical accords in a simple auditory sensory model

    Get PDF
    The phenomena of dissonance and consonance in a simple auditory sensory model composed of three neurons are considered. Two of them, here so-called sensory neurons, are driven by noise and subthreshold periodic signals with different ratio of frequencies, and its outputs plus noise are applied synaptically to a third neuron, so-called interneuron. We present a theoretical analysis with a probabilistic approach to investigate the interspike intervals statistics of the spike train generated by the interneuron. We find that tones with frequency ratios that are considered consonant by musicians produce at the third neuron inter-firing intervals statistics densities that are very distinctive from densities obtained using tones with ratios that are known to be dissonant. In other words, at the output of the interneuron, inharmonious signals give rise to blurry spike trains, while the harmonious signals produce more regular, less noisy, spike trains. Theoretical results are compared with numerical simulations

    Stability in a System subject to Noise with Regulated Periodicity

    Get PDF
    The stability of a simple dynamical system subject to multiplicative one-side pulse noise with hidden periodicity is investigated both analytically and numerically. The stability analysis is based on the exact result for the characteristic functional of the renewal pulse process. The influence of the memory effects on the stability condition is analyzed for two cases: (i) the dead-time-distorted Poissonian process, and (ii) the renewal process with Pareto distribution. We show that, for fixed noise intensity, the system can be stable when the noise is characterized by high periodicity and unstable at low periodicity

    THE BISTABLE POTENTIAL: AN ARCHETYPE FOR CLASSICAL AND QUANTUM SYSTEMS

    Get PDF
    In this work we analyze the transient dynamics of three different classical and quantum systems. First, we consider a classical Brownian particle moving in an asymmetric bistable potential, subject to a multiplicative and additive noise source. We investigate the role of these two noise sources on the life time of the metastable state. A nonmonotonic behavior of the lifetime as a function of both additive and multiplicative noise intensities is found, revealing the phenomenon of noise enhanced stability. Afterward, by using a Lotka–Volterra model, the dynamics of two competing species in the presence of Lévy noise sources is analyzed. Quasiperiodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species are found. Finally the dynamics of a quantum particle subject to an asymmetric bistable potential and interacting with a thermal reservoir is investigated. We use the Caldeira–Leggett model and the approach of the Feynman–Vernon functional in discrete variable representation. We obtain the time evolution of the population distributions in energy eigenstates of the particle, for different values of the coupling strength with the thermal bath

    Dynamics of two competing species in the presence of LĂ©vy noise sources

    No full text
    We consider a Lotka-Volterra system of two competing species subject to multiplicative alpha-stable LĂ©vy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive alpha-stable LĂ©vy noise. We study the species dynamics, which is characterized by two different regimes, exclusion of one species and coexistence of both. We find quasi-periodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species, analysing the role of the LĂ©vy noise sources

    Dynamics of a Lotka-Volterra system in the presence of non-Gaussian noise sources

    No full text
    We consider a Lotka-Volterra system of two competing species subject to multiplicative α-stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive alpha-stable Lévy noise. We study the species dynamics, which is characterized by two different dynamical regimes, exclusion of one species and coexistence of both ones, analyzing the role of the Lévy noise sources

    Environmental noise and nonlinear relaxation in biological systems

    No full text
    We investigate the role of the environmental noise in three biological systems: (i) an ecosystem described by a Verhulst model with a multiplicative LĂ©vy noise; (ii) polymer translocation, and (ii) individuals of Nezara viridula. Specifically the transient dynamics of the Verhulst model perturbed by arbitrary non-Gaussian white noise is investigated as a first biological system. For Cauchy stable noise, exact results for the probability distribution of the population density and nonlinear relaxation are derived. We find a transition induced by the multiplicative LĂ©vy noise, from a trimodal probability distribution to a bimodal probability distribution in asymptotics, and a nonmonotonic behavior of the nonlinear relaxation time as a function of the Cauchy stable noise intensity. (ii) The noise driven translocation of short polymers in crowded solutions is analyzed as a second biological system. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion with a Gaussian uncorrelated and correlated noise source, and an oscillating electric field. We find a nonmonotonic behaviour of the mean first passage time and the most probable translocation time, of the polymer centre of inertia, as a function of the polymer length at low noise intensity: Moreover the mean first translocation time of the polymer centre of inertia shows a resonant activation behavior. Finally we report on experiments on the response of Nezara viridula individuals to sub-threshold signals plus noise in their mating behavior. We analyzed the insect response by directionality tests and different noise intensity levels performed on a group of male individuals. The percentage of insects which react to the sub-threshold signal, shows a non-monotonic behavior, characterized by the presence of a maximum, for increasing levels of the noise intensity. This is the signature of the non-dynamical stochastic resonance phenomenon. By using a "soft" threshold model we find that the maximum of the output cross correlation occurs in the same range of noise intensity values for which the activating behavioral has a maximum
    corecore