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In this work we analyze the transient dynamics of three different classical and quan-
tum systems. First, we consider a classical Brownian particle moving in an asymmetric
bistable potential, subject to a multiplicative and additive noise source. We investigate
the role of these two noise sources on the life time of the metastable state. A nonmono-
tonic behavior of the lifetime as a function of both additive and multiplicative noise
intensities is found, revealing the phenomenon of noise enhanced stability. Afterward, by
using a Lotka–Volterra model, the dynamics of two competing species in the presence
of Lévy noise sources is analyzed. Quasiperiodic oscillations and stochastic resonance
phenomenon in the dynamics of the competing species are found. Finally the dynamics
of a quantum particle subject to an asymmetric bistable potential and interacting with a
thermal reservoir is investigated. We use the Caldeira–Leggett model and the approach
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of the Feynman–Vernon functional in discrete variable representation. We obtain the
time evolution of the population distributions in energy eigenstates of the particle, for

different values of the coupling strength with the thermal bath.

Keywords: Metastability and bistability; multiplicative noise; noise enhanced stability;
stochastic resonance; population dynamics; open quantum systems.

1. Introduction

Relaxation phenomena in many natural systems proceed through metastable states,

often observed in condensed matter physics, and also in various other fields, from

cosmology to biology and high-energy physics.1–4 In this work we analyze relaxation

phenomena in three different classical and quantum systems. (i) First, we consider

a classical system with asymmetric bistable potential, and investigate the role of

a multiplicative and an additive noise source on the life time of the metastable

state. A nonmonotonic behavior of the lifetime as a function of both additive and

multiplicative noise source intensities is found, revealing the phenomenon of noise

enhanced stability (NES).5–7 (ii) In the second system the dynamics of two com-

peting species, in the presence of alpha stable Lévy noise sources,8 is analyzed. By

using a Lotka-Volterra model we study the time behavior of this ecosystem inter-

acting with the noise sources, which mimic the surrounding environment. The role

of the two non-Gaussian noise sources in the exclusion and coexistence regimes is

analyzed, and stochastic resonance phenomenon in the dynamics of the compet-

ing species is found. (iii) Finally, the dynamics of a quantum particle subject to

an asymmetric bistable potential and interacting with a thermal reservoir, that is

the environmental noise, is investigated. We use the Caldeira–Leggett model and

the approach of the Feynman–Vernon functional in discrete variable representation

(DVR).9 We obtain the time evolution of the population distributions in energy

eigenstates of the particle, varying the value of the coupling strength between par-

ticle and thermal bath.

2. Metastable State with Multiplicative Noise

Systems described by equations, whose noise amplitude is proportional or in gen-

eral is a function of the order parameter, are ubiquitous in many different areas of

scientific investigation. Such equations are said multiplicative Langevin equations

(MLE) because the noise amplitude depends on the state variables themselves.

Systems exhibiting absorbing states and noise-induced phase transitions can be

described by these equations.10–14 The models based on MLE abound not only in

physics, but also in biology, ecology, economy, or social sciences. The function of the

order parameter g(x) takes different forms depending on the system investigated,

ranging from a pure linear multiplicative noise term, often used in population dy-

namics, to more general expressions which represent the effects of both additive

and multiplicative noise sources.15,16
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Recently, metastability and nucleation in a kinetic two-dimensional Ising model

has been analyzed using a Langevin equation with additive and multiplicative noise

sources. The nonlinear interplay between the thermal fluctuations, that is the ad-

ditive noise, and the nonequilibrium fluctuations, that is the multiplicative noise,

gives rise to the noise enhanced stabilization of the metastable state.17

Here we focus on the effect of both the additive and the multiplicative noise

on a Brownian particle moving in an asymmetric bistable potential, characterized

by a metastable state. We investigate the average life time of the metastable state

for the Brownian particle starting from an initial unstable state. Using functional

analysis we obtain the Fokker–Planck equation, corresponding to the Langevin

multiplicative equation, and the stationary probability density function (PDF). The

system shows the presence of an increase of stability as a function of both noise

intensities (multiplicative and additive), giving rise to a nonmonotonic behavior of

the average life time of the metastable state. This confirms that a suitable noise

intensity can stabilize metastable systems.18,19

2.1. The Model

The Langevin equation of a Brownian particle driven by a noise source is given by

the following MLE

dx(t)

dt
= f(x(t)) + g(x(t))ξ(t) , (1)

where f(x(t)) and g(x(t)) are arbitrary deterministic functions of the order param-

eter x(t), and ξ(t) is a random force which in our case is a Gaussian white noise

with the usual statistical properties: 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t + τ)〉 = 2Dδ(τ). Using

Eq. (1), the relation P (x, t) = 〈δ(x−x(t))〉 and the ordinary calculus we obtain the

corresponding Fokker–Planck equation for the PDF21,22

∂P (x, t)

∂t
= −

∂

∂x
[f(x)P (x, t)] +D

∂

∂x

[

g(x)
∂

∂x
[g(x)P (x, t)]

]

. (2)

This is the “Stratonovich form” of the Fokker–Planck equation, because we used the

ordinary calculus. The asymptotic stationary distribution is obtained from Eq. (2)

by putting (∂Pst(x, t)/∂t) = 0, that is

Pst(x) =
N

g(x)
exp

(

−

∫

f(x′)

Dg2(x′)
dx′

)

= N e−
Veff (x)

D , (3)

where the value of N is given by the normalization condition. From Eq. (3) we see

that the positions of the minima and maxima are depending on the functional form

of g(x).10 We choose for our model g(x) =
√

D + µx2, whereD is the strength of the

additive noise, i.e., thermal noise, and µ is the intensity of the multiplicative noise.

The deterministic driving force is f(x) = −(dV /dx), and V (x) = 4x4+2x3−8x2−6x

is an asymmetric quartic potential (see Fig. 1), with two minima at x = 1 and

x = −1 (metastable state), and a maximum at x = −3/8. In Fig. 1 we show: (i) the
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Fig. 1. (Color online) The potential V (x) (green dot line) and the corresponding PDF (magenta
dot line) for the pure additive noise case (D = 0.32 and µ = 0.0). The effective potential Veff (con-
tinuous red line) and the corresponding PDF (blue dot line) in the presence both of multiplicative
and additive noise sources D = 0.32 and µ = 0.5. The arrow indicates the initial position of the
Brownian particle.

potential V (x) and the PDF for the pure additive noise case, (ii) the effective

potential Veff and the corresponding PDF in the presence both of multiplicative

and additive noise sources with intensities respectively µ = 5 and D = 0.32.

2.2. Simulation results

In order to explore the role played by parametersD and µ, we calculated the numer-

ical solutions of Eq. (1), obtaining the mean escape time (MET). We performed our

simulations by choosing for the system the initial unstable condition x = −0.25, just

on the right of the maximum (see Fig. 1), and an absorbing barrier at x = 0.99. The

results show that there is a nonmonotonicity of the MET in both the parameters D

and µ. In Fig. 2 we show the behavior of the MET as a function of the parameter

D for five different values of the parameter µ, namely µ = 0.0, 0.04, 0.15, 0.19, 0.23.

We observe that for every value of µ we have the same nonmonotonic trend with

a maximum. In particular, for increasing values of µ the maximum of the MET

decreases and shifts toward low values of the parameter D. In Fig. 3 we show the

behavior of MET versus the multiplicative noise intensity µ for different values of

D, namely D = 0.0, 0.04, 0.08, 0.12, 0.16.

The NES effect is almost absent in the presence of a pure multiplicative noise

source (D = 0.0). We observe that increasing of the value of parameter D up to

∼ 0.2 causes an enhancement of the NES effect. Simulations performed for higher

values of D, not reported here, show that the maximum of MET decreases consider-

ably. This means that there is an optimum range of values both of multiplicative and

additive noise intensities for which the enhancement of metastability is observed.
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Fig. 2. (Color online) Plot of the MET as function of D for five different values of the parameter
µ, namely µ = 0.0, 0.04, 0.15, 0.19, 0.23.
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Fig. 3. (Color online) Plot of the behavior of the MFPT as function of µ for several values of
the parameter D, namely D = 0.0 (continuous red line), D = 0.04 (dot green line), D = 0.08 (dot
blue line), D = 0.12 (dot magenta line), D = 0.16 (aqua dot line). Inset: magnification of the
behaviors for low noise intensities.

3. Lévy Noise in Population Dynamics

The random walk of a particle subject to a Lévy noise source is characterized by

“flights” appearing in the particle trajectory that show diffusion properties very

different from those obtained in the presence of a Gaussian noise source. Lévy

flights have been observed in many physical, biological and social systems, where

scale-invariance phenomena take place8,23–25 (for a recent review on Lévy flights see

Ref. 8 and references therein). Recently noise induced transitions, such as stochastic

resonance, resonant activation and noise enhanced stability were observed in the
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Fig. 4. (Color online) Two-dimensional trajectories of free diffusion of a particle subjected to

noise sources with six different values of the shape parameters. Namely: (a) Gaussian (α = 2, β =
0); (b)–(e) Lévy (α = 1.8, 1.6, 1.4, 1.2); (f) Cauchy–Lorentz (α = 1, β = 0). The values of the other
parameters are µ = 0, σ = 1 and β = 0. Arbitrary units are used in both axes.

presence of Lévy noise.26–28 Moreover, Lévy flights have been successfully used to

describe the spatial distributions of predators or foragers in ecological systems.29,30

Lévy flights are stochastic processes characterized by the occurrence of extremely

long jumps, and their trajectories are not continuous. The length of these jumps is

distributed according to a Lévy stable statistics with a power-law tail and diver-

gence of the second moment. Such distributions form a four-parameter family of

continuous probability distributions with location and scale parameters µ and σ,

respectively, and two shape parameters β (asymmetry parameter) and α (index of

stability or characteristic exponent).31 In Fig. 4, sample trajectories for six different

values of α and β parameters are shown. We note that for β = 0, a Lévy symmetric

α-stable distribution is obtained.

In this paper we investigate the stochastic dynamics of two competing species

within the formalism of the generalized Lotka–Volterra equations in the presence

of multiplicative Lévy noise sources

dx

dt
= mx(a− x− γ(t)y) + xξα,βx (t) , (4)

dy

dt
= my(a− y − γ(t)x) + yξα,βy (t) , (5)

where a is the growth parameter and γ(t) is the time-dependent interaction pa-

rameter between the species. Here ξα,βx (t) and ξα,βy (t) are statistically independent

α-stable Lévy noises with zero mean (µ = 0). The noise intensityD = σα is assumed

to be equal for the two noise sources. Here σ is the scale parameter of the Lévy

distribution. The time series for the two populations are obtained setting m = 70
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and a = 1. It is known that for γ < 1 a coexistence regime takes place, while for

γ > 1 an exclusion regime is established.32–34 Coexistence of the two species and

exclusion of one of them correspond to stable states of the Lotka–Volterra’s deter-

ministic model. Because of the strong interaction between the ecological system and

the environment, the interaction parameter γ(t) is affected both by deterministic

periodical “forces”, e.g., temperature, and random fluctuations of environmental

variables such as food resources. As a consequence, noise together with periodic

forces determines the crossing from one dynamical regime (γ < 1 → coexistence)

to the other one (γ > 1 → exclusion). This continuous and noisy behavior of the

interaction parameter γ(t) can be described by the stochastic differential equation

dγ(t)

dt
= −

∂U(γ, t)

∂γ
+ ξα,βγ (t) , (6)

where

U(γ, t) = h(γ − 1)4/η4 − 2h(γ − 1)2/η2 +Aγ cos(ω0t) (7)

is the time-dependent bistable quartic potential, and ξα,βγ (t) represents the random

fluctuations of environmental variables.

The effect of the noise on the time behavior of the interaction parameter γ(t)

consists in causing jumps from the left-side well (γ = 0.5) to the right-side (γ =

1.5) of the potential U(γ, t). The alternating coexistence/exclusion regime can be

modulated by the specific Lévy noise source ξα,βγ (t) with µ = 0, varying both the

intensity Dγ and the parameters α and β. The synchronization effect observed in

the presence of a suitable intensity of Gaussian noise is a well-known effect, named

stochastic resonance (SR),35,36 and could affect considerably the dynamics of real

ecosystems. One signature of the SR phenomenon is the presence of a maximum in

the signal power amplification (SPA) η as a function of the noise intensity.35 The

SPA is defined as the ratio of the power of the output signal γ(t) sampled at the

frequency Ω of the external driving, to the power of the driving signal. In Fig. 5

we show the SPA behavior for symmetric (β = 0) Lévy noise sources and different

values of the index α of the stable Lévy distribution. The nonmonotonic behavior

of the SPA indicates clearly the presence of stochastic resonance, characterized by a

maximum whose value decreases as the index α approaches 1 (Cauchy distribution).

The behavior for α = 2 corresponds to the Gaussian noise source.

Now we analyze the dynamics of the two species densities for different sym-

metrical (β = 0) α-stable Lévy distributions. We consider the noise intensity Dγ

corresponding to the maximum of SPA in Fig. 5, and solve numerically Eqs. (4)

and (5) for different values of the multiplicative noise intensity D. The alternating

dynamical regime, resulting from the quasi-periodical oscillation of γ(t) between

the two potential wells, determines the anticorrelated oscillating behavior of the

two species. Moreover, a multiplicative noise intensity exists that induces oscillat-

ing behavior with a maximum of anticorrelation between the two species breaking

the symmetric dynamical behavior of the ecosystem.33 Therefore, we calculate the
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Fig. 5. (Color online) Spectral power amplification η of γ(t) as a function of the noise intensity
Dγ , for different values of the index α of the stable Lévy distribution, namely α = 1.6, 1.7, 1.8,
1.9, 2.0.
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Fig. 6. (Color online) The SNR of the quantity (x − y)2 as a function of the noise intensity D,
for different values of the index α, namely α = 1.6, 1.7, 1.8, 1.9, 2.0, and β = 0. Here we set Dγ at
the value that maximizes the SPA curves of the parameter γ(t). Red plus, green cross, blue star,
pink empty square and light blue full square represent the SNR values calculated by numerical
integration of Eqs. (4)–(6). The solid lines are the curves obtained by interpolating the numerical
data. Each curve corresponds to the symbols with the same color.

signal-to-noise ratio (SNR) of (x−y)2 for different values of α. The results are shown

in Fig. 6. We can observe the presence of a nonmonotonic behavior characterized

by a maximum, which is the other signature of the SR phenomenon. This confirms

that the multiplicative noise is responsible for a further SR phenomenon affect-

ing directly the dynamics of the two species. The maximum of the SNR decreases

as α approaches 1, according to the behavior of SPA observed for the interaction

parameter γ (see Fig. 5).
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4. Quantum System

In a dissipative quantum system interacting with a thermal bath, the quantum

tunneling can play an important role on the relaxation time from a metastable

state.9 During the last decades the effects of environment on quantum tunneling

phenomenon have been intensively studied.9,37–40 In this context, symmetric and

asymmetric quantum bistable systems are good enough to analyze superconducting

quantum bits and decoherence phenomena.41,42

4.1. The model

In order to analyze the evolution of a quantum particle subjected to time-

independent asymmetric bistable potential and affected by environmental noise, we

use the Caldeira–Leggett model.37 The study is performed by using the approach

of the Feynman–Vernon functional43 in discrete variable representation (DVR).44

Our physical model consists of a quantum particle with mass M , interacting with

a thermal bath which plays the role of environment. The unperturbed Hamilto-

nian of the system, where q̂ and p̂ are one-dimensional operators for position and

momentum respectively, is

Ĥ0 =
p̂2

2M
+ V̂0(q̂) , (8)

where

V̂0(q̂) =
M2ω4

0

64∆U
q̂4 −

Mω4
0

4
q̂2 − q̂ǫ , (9)

is the asymmetric bistable potential shown in Fig. 7. Here, ǫ and ∆U are the

asymmetry parameter and the barrier height, respectively, and ω0 is the natural

oscillation frequency. Here we study the dynamics of the system using this spe-

cific shape of potential, considering only the eight lowest energy eigenstates, whose

eigenvalues are shown on the vertical axis of Fig. 7. This allows the quantum parti-

cle to escape from the metastable state only via the tunnel effect. In the same figure,

on the horizontal axis the eight position eigenvalues are displayed. The dark blue

rectangle marks the initial position of the particle. Specifically, this position does

not coincide with any energy eigenstate, and therefore is given by a proper linear

combination of the eight energy eigenstates. The curves shown in the figures are

the eigenfunctions corresponding to the eight energy eigenvalues. The Hamiltonian

can be split as follows

Ĥ = Ĥ0 + ĤB , (10)

where

ĤB =

N
∑

j=1

1

2





p̂2j
mj

+mjω
2
j

(

x̂j −
cj

mjω2
j

q̂

)2


 (11)
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Fig. 7. (Color online) Potential profile V0(q) [see Eq. (9)] for ∆U = 3 and ǫ = 0.6. Energy levels
and corresponding eigenstates considered in our analysis are indicated by horizontal lines and
curves, respectively. The initial position is qstart = q0 (blue rectangle).

is the Hamiltonian which describes the thermal reservoir and its interaction with

the particle, according to the Caldeira–Leggett model. The thermal bath consists of

an ensemble of N harmonic oscillators with spatial coordinate x̂j , momentum p̂j ,

mass mj , and frequency ωj . The coefficients cj are the coupling constants between

system and thermal bath. If N → ∞, we have a continuous spectral density. In

the Markovian limit, which corresponds to the dissipation in the Ohmic regime,

the damping is frequency independent, i.e., γ(ω) = γ, and the spectral density is

given by37 J(ω) = ηω, where η is the coupling strength between the system and

the thermal bath, and represents the intensity of the environmental noise. In our

model, we choose a spectral density characterized by an exponential cut-off with a

cutting frequency ωc as follows

J(ω) = ηω exp

(

−
ω

ωc

)

. (12)

4.2. The Feynman–Vernon approach

Following the Feynman–Vernon approach we write the density operator as follows

ρ(qf , q
′
f ; t) =

∫

dq0

∫

dq′0K(qf , q
′
f , t; q0, q

′
0, t0)ρS(q0, q

′
0, t0) , (13)

where the propagator K is given by

K(qf , q
′
f , t; q0, q

′
0, t0) =

∫ q(t)=qf

q(t0)=q0

Dq

∫ q′(t)=q′f

q′(t0)=q′0

Dq′A[q]A∗[q′]FFV[q, q
′] (14)
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and

A[q] = exp

(

i
SS[q]

~

)

(15)

with SS [q] being the classical action functional. In Eq. (14), FFV[q, q
′] =

exp(−(φFV[q, q
′]/~)) is the Feynman–Vernon (FV) influence functional with the

influence weight functional φFV[q, q
′], which is depending on the bath correlation

function.40

4.3. Discrete variable representation

By solving the eigenvalue equation connected with the Hamiltonian Ĥ0 we get the

energy eigenstates. If we choose to change the basis of the eigenstates going from

the energy representation to the position one, we can describe the localization of

the quantum particle. We recall that the eigenvalues of the position operator q̂ in

the basis {|qµ〉} are shown in the horizontal axis of Fig. 7.

Within the framework of the discrete variable representation (DVR)44 the dy-

namics is described by the quantum mechanical paths q(t), which the system fol-

low during its evolution in time. The system starts at time t = t0 in the state

q(t0) = q0 and evolves via m jumps between the M discrete states into the final

state q(tm) = qm. The double path integral over the m-state paths q(t) and q′(t)

in Eq. (13) is rewritten as an integral over a single path that jumps between the

M2 states of the reduced density matrix in the (q, q′)-plane. The total number m

of jumps is given by the sum of the number of jumps for the paths q and q′. The

path can be split in two kinds of subpaths in the relative (ξ(t)) and center of mass

(χ(t)) coordinates as follows

q(t) = [q(t)− q(t′)] + [q(t′) + q(t)] = [ξ(t)] + [χ(t)] . (16)

The system may be in a state where ξ(t) = 0 and χ(t) 6= 0 or a state where ξ(t) 6= 0

and χ(t) 6= 0. The first kind of states is called sojourn and the second kind of

states is called blip. From the previous definition it is clear that the sojourns are

the diagonal states of the density matrix in the DVR representation while the blip

are the off-diagonal states.

4.4. Master equation

Applying the Non-Interacting Cluster Approximation9 or NICA it is possible to

obtain the following master equation (ME)

ρ̇µµ(t) =

N
∑

ν=1

∫ t

t0

dt′Hµν(t− t′)ρνν(t
′) , (17)
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where µ = 1, . . . , N and N is the number of eigenstates. The kernel of the Eq. (17)

has a huge expression in terms of integrals calculated on all the paths as follows

Hµν(t− t′) =

∞
∑

m=1

∫ t

t0

D[tj ]
∑

µjνj

exp







i

m−1
∑

j=0

∫ tj+1

tj

dt′ × [Eµj
(t′)− Eνj (t

′)]







×
m−1
∏

j=0

(−1)δj
(

i

2

)m

∆j

× exp







m
∑

l=1

l−1
∑

j=0

ξlS(tl − tj)ξj + i
m
∑

l=1

l−1
∑

j=0

ξlR(tl − tj)χj







, (18)

and therefore takes into account all possible transitions in the DVR paths.9 Using

the NICA approximation we have the approximated ME

ρ̇µµ(t) =

N
∑

ν=1

Γµν(t)ρνν(t) . (19)

The rate which determines the dynamics over the largest time scale is the quantum

relaxation rate

Γ ≡ min{|ℜ(Λν)|; ν = 2, . . . , N} , (20)

where Λν are the eigenvalues of the rate matrix and |ℜ(Λν)| are the nonzero ab-

solute values of the real part of Λν . We focus the analysis on the medium–short

time behavior of the system, using the largest Λ−1
ν as time scale to analyze the

non-equilibrium dynamics of the quantum particle in the presence of thermal fluc-

tuations.

4.5. Results

In this section we study the time evolution of our quantum particle taking into

account the eight energy levels shown in Fig. 7. The analysis is restricted to the

eight lowest levels of the system in order to point out the contribution of the tunnel

effect to the dynamics of the particle. We analyze the time behavior of the popu-

lations for different values of the coupling strength, focusing on the time behavior

of the state |q0〉 (left well of the potential) choosing in the DVR-representation the

position qstart = q0. By integrating Eq. (17) for different values of the parameter

η, the eigenstates |qµ〉 are considered and the time behavior of the corresponding

population ρqµ ≡ ρµµ is obtained. Then, by a simple change of basis, it is possi-

ble to calculate the time evolution of the populations in the energy representation.

It is worth noting that for each value of the noise intensity η there are N relax-

ation times. In order to set the time scale to observe the transient behavior, it is

convenient to consider the maximum of these relaxation times. Simulations show

that this time increases rapidly for larger values of η. Therefore, to describe the
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Fig. 8. (Color online) Population of the energy levels as a function of the noise intensity η for

t = τ/4.

time evolution of the system for different values of η, we choose as time scale τ

the largest of the relaxation times obtained for η = 0.01. This choice allows to

follow the transient dynamics of the system for low and intermediate values of the

coupling constant. In Figs. 8 and 9 we show the behavior of the populations of the

eight energy levels as a function of η for two different times.

Our initial condition (see Fig. 7) implies that the only energy eigenfunctions

involved in the initial state are |E6〉 and |E7〉. In particular, as one can see in

Figs. 8 and 9, the greater contribution is due to the eigenstate |E6〉. Moreover, we

note that the eigenfunctions |E6〉 and |E7〉 are the only ones that do not vanish in

the left well, and so we can think of them as the “left” eigenstates, considering the

other ones as the “right” eigenstates. We can see that for t = τ/4 we have, for all

the energy levels, a nonmonotonic behavior of the populations as a function of the

noise intensity, with an extremum at η ≈ 0.05. For the eigenstates |E6〉 and |E7〉
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Fig. 9. (Color online) Population of the energy levels as a function of the noise intensity η for
t = 6τ .

in particular we note a minimum, while for the “right” eigenstates we observe a

maximum. This can be interpreted as an escape of the particle from the left well

(the metastable one) toward the right one (the stable one). For η > 0.2 we see that

the populations tend to constant values both for t = τ/4 and t = 6τ . This behavior

can be explained by the quantum Zeno effect, responsible for a slowing down or,

for higher values of the noise intensity η, a freezing of the dynamics.45
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