3 research outputs found

    Elements About Exploratory, Knowledge-Based, Hybrid, and Explainable Knowledge Discovery

    Get PDF
    International audienceKnowledge Discovery in Databases (KDD) and especially pattern mining can be interpreted along several dimensions, namely data, knowledge, problem-solving and interactivity. These dimensions are not disconnected and have a direct impact on the quality, applicability, and efficiency of KDD. Accordingly, we discuss some objectives of KDD based on these dimensions, namely exploration, knowledge orientation, hybridization, and explanation. The data space and the pattern space can be explored in several ways, depending on specific evaluation functions and heuristics, possibly related to domain knowledge. Furthermore, numerical data are complex and supervised numerical machine learning methods are usually the best candidates for efficiently mining such data. However, the work and output of numerical methods are most of the time hard to understand, while symbolic methods are usually more intelligible. This calls for hybridization, combining numerical and symbolic mining methods to improve the applicability and interpretability of KDD. Moreover, suitable explanations about the operating models and possible subsequent decisions should complete KDD, and this is far from being the case at the moment. For illustrating these dimensions and objectives, we analyze a concrete case about the mining of biological data, where we characterize these dimensions and their connections. We also discuss dimensions and objectives in the framework of Formal Concept Analysis and we draw some perspectives for future research

    Exceptional Attributed Subgraph Mining To Understand The Olfactory Percept

    No full text
    International audienceHuman olfactory perception is a complex phenomenon whose neural mechanisms are still largely unknown and novel methods are needed to better understand it. Methodological issues that prevent such understanding are: (1) to be comparable, individual cerebral images have to be transformed in order to fit a template brain, leading to a spatial imprecision that has to be taken into account in the analysis; (2) we have to deal with inter-individual variability of the hemodynamic signal from fMRI images which render comparisons of individual raw data difficult. The aim of the present paper was to overcome these issues. To this end, we developed a methodology based on discovering exceptional attributed subgraphs which enabled extracting invariants from fMRI data of a sample of individuals breathing different odorant molecules.Four attributed graph models were proposed that differ in how they report the hemody-namic activity measured in each voxel by associating varied attributes to the vertices of the graph. An extensive empirical study is presented that compares the ability of each modeling to uncover some brain areas that are of interest for the neuroscientists
    corecore