98 research outputs found

    The rich physics of A-site-ordered quadruple perovskite manganites AMn₇O₁₂

    Get PDF
    Perovskite-structure AMnO3 manganites played an important role in the development of numerous physical concepts such as double exchange, small polarons, electron–phonon coupling, and Jahn–Teller effects, and they host a variety of important properties such as colossal magnetoresistance and spin-induced ferroelectric polarization (multiferroicity). A-site-ordered quadruple perovskite manganites AMn7O12 were discovered shortly after, but at that time their exploration was quite limited. Significant progress in their understanding has been reached in recent years after the wider use of high-pressure synthesis techniques needed to prepare such materials. Here we review this progress, and show that the AMn7O12 compounds host rich physics beyond the canonical AMnO3 materials

    Competing electronic instabilities in the quadruple perovskite manganite PbMn₇O₁₂

    Get PDF
    Structural behavior of PbMn_{7}O_{12} has been studied by high resolution synchrotron x-ray powder diffraction. This material belongs to a family of quadruple perovskite manganites that exhibit an incommensurate structural modulation associated with an orbital density wave. It has been found that the structural modulation in PbMn_{7}O_{12} onsets at 294 K with the incommensurate propagation vector ks=(0,0,∼2.08). At 110 K another structural transition takes place where the propagation vector suddenly drops down to a quasicommensurate value ks=(0,0,2.0060(6)). The quasicommensurate phase is stable in the temperature range of 40-110 K, and below 40 K the propagation vector jumps back to the incommensurate value ks=(0,0,∼2.06). Both low temperature structural transitions are strongly first order with large thermal hysteresis. The orbital density wave in the quasicommensurate phase has been found to be substantially suppressed in comparison with the incommensurate phases, which naturally explains unusual magnetic behavior recently reported for this perovskite. Analysis of the refined structural parameters revealed that that the presence of the quasicommensurate phase is likely to be associated with a competition between the Pb^{2+} lone electron pair and Mn^{3+} Jahn-Teller instabilities

    BiMn7 O12: Polar antiferromagnetism by inverse exchange striction

    Get PDF
    Despite extensive research on magnetically induced ferroelectricity there exist relatively few studies on how a preexisting electric polarization affects magnetic order. Given that well-established magnetoelectric coupling schemes can in principle work in reverse, one might anticipate that primary, polar magnetic structures could be uniquely stabilized in ferroelectric crystals, however, this scenario is apparently rare. Here, we show that in ferroelectric BiMn7O12, a pure, polar E-type antiferromagnetic order emerges below T1=59 K, and we present a phenomenological model of trilinear magnetoelectric coupling consistent with Bi3+ lone-pair driven polar distortions uniquely stabilizing the polar antiferromagnetism via modulation of Heisenberg exchange pathways, i.e., inverse exchange striction. In addition, below T2=55 K there occurs large commensurate canting of the E-type structure due to the onset of ferrimagnetic order on a separate crystallographic sublattice that may be exploited for additional magnetoelectric functionality

    A plethora of structural transitions, distortions and modulations in Cu-doped BiMn7O12 quadruple perovskites

    Get PDF
    The presence of strongly competing electronic instabilities in a crystalline material can produce fascinating structural phenomena. For example, the A-site-ordered quadruple perovskite BiMn7O12 hosts both active polar instabilities of the Bi3+ lone pair electrons and Jahn–Teller instabilities of Mn3+ cations that drive the following sequence of phase transformations on cooling, Im-3 > I2/m > Im > P1, corresponding to orbital ordering and polar distortions. Carrier doping by Cu2+ tunes the two instabilities in BiCuxMn7−xO12 solid solutions and significantly complicates the system behavior. The x = 0.05 and 0.1 members show the following sequence of phase transformations on cooling, Im-3 > I2/m > R-1(αβγ)0 > R3(00γ)t, and are examples of materials with the electric dipole helicoidal texture in the ground state and a dipole density wave structure in the intermediate R-1(αβγ)0 phase (Science 2020, 369, 680–684). Here, the detailed behavior of the BiCuxMn7−xO12 solid solutions with x = 0.2–0.8 was investigated by laboratory X-ray, synchrotron X-ray, and neutron powder diffraction between 5 K and 620 K, and differential scanning calorimetry measurements. Nearly every composition (with a step Δx = 0.1) has a unique behavior when considering both the sequence of phase transitions and the presence of incommensurate superstructure reflections. The sequence Im-3 > HT-Immm(t)* > Immm* > LT-Immm(t)* is realized for x = 0.2 and 0.3 (where t denotes pseudo-tetragonal), Im-3 > I2/m* > Immm(t)* – for x = 0.4, Im-3 > I2/m* > I2/m* – for x = 0.5, Im-3 > I2/m* > Im-3 – for x = 0.6 and 0.7, and Im-3 > R-3 > I2/m > Im-3 – for x = 0.8, where asterisks denote the presence of additional incommensurate reflections. Re-entrance of the high-temperature cubic phase was observed at low temperatures for x = 0.6–0.8 suggesting strong competition between the different electronic instabilities. The re-entrant cubic phases have nearly zero thermal expansion

    Magnetic inhomogeneities in the quadruple perovskite manganite [Y_{2-x}Mn_{x}] Mn_{6}O_{12}

    Get PDF
    A combination of competing exchange interactions and substitutional disorder gives rise to magnetic inhomogeneities in the [Y_{2-x}Mn_{x}]Mn_{6}O-{12}x = 0.23 and 0.16 quadruple perovskite manganites. Our neutron powder scattering measurements show that both the x=0.23 and 0.16 samples separate into two distinct magnetic phases; below T_{1} = 120 ± 10 K the system undergoes a transition from a paramagnetic phase to a phase characterized by short-range antiferromagnetic clusters contained in a paramagnetic matrix, and below T2≈65 K the system is composed of well-correlated long-range collinear ferrimagnetic order, punctuated by short-range antiferromagnetic clusters. A sharp increase in the antiferromagnetic phase fraction is observed below ≈33 K, concomitant with a decrease in the ferrimagnetic phase fraction. Our results demonstrate that the theoretically proposed antiferromagnetic phase is stabilized in the [Y_{2-x}Mn_{x}] Mn_{6}O_{12} manganites in the presence of dominant B-B exchange interactions, as predicted

    High-Pressure Synthesis, Crystal Structures, and Properties of A-Site Columnar-Ordered Quadruple Perovskites NaRMn2Ti4O12 with R = Sm, Eu, Gd, Dy, Ho, Y

    Get PDF
    The formation of NaRMn2Ti4O12 compounds (R = rare earth) under high pressure (about 6 GPa) and high temperature (about 1750 K) conditions was studied. Such compounds with R = Sm, Eu, Gd, Dy, Ho, Y adopt an A-site columnar-ordered quadruple-perovskite structure with the generic chemical formula A2A′A″B4O12. Their crystal structures were studied by powder synchrotron X-ray and neutron diffraction between 1.5 and 300 K. They maintain a paraelectric structure with centrosymmetric space group P42/nmc (No. 137) at all temperatures, in comparison with the related CaMnTi2O6 perovskite, in which a ferroelectric transition occurs at 630 K. The centrosymmetric structure was also confirmed by second-harmonic generation. It has a cation distribution of [Na+R3+]A[Mn2+]A′[Mn2+]A″[Ti4+4]BO12 (to match with the generic chemical formula) with statistical distributions of Na+ and R3+ at the large A site and a strongly split position of Mn2+ at the square-planar A′ site. We found a C-type long-range antiferromagnetic structure of Mn2+ ions at the A′ and A″ sites below TN = 12 K for R = Dy and found that the presence of Dy3+ disturbs the long-range ordering of Mn2+ below a second transition at lower temperatures. The first magnetic transition occurs below 8–13 K in all compounds, but the second magnetic transition occurs only for R = Dy, Sm, Eu. All compounds show large dielectric constants of a possible extrinsic origin similar to that of CaCu3Ti4O12. NaRMn2Ti4O12 with R = Er–Lu crystallized in the GdFeO3-type Pnma perovskite structure, and NaRMn2Ti4O12 with R = La, Nd contained two perovskite phases: an AA′3B4O12-type Im3̅ phase and a GdFeO3-type Pnma phase

    KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species

    Get PDF
    KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions
    corecore