44 research outputs found

    No evidence for association between SLC11A1 and visceral leishmaniasis in India.

    Get PDF
    BACKGROUND: SLC11A1 has pleiotropic effects on macrophage function and remains a strong candidate for infectious disease susceptibility. 5' and/or 3' polymorphisms have been associated with tuberculosis, leprosy, and visceral leishmaniasis (VL). Most studies undertaken to date were under-powered, and none has been replicated within a population. Association with tuberculosis has replicated variably across populations. Here we investigate SLC11A1 and VL in India. METHODS: Nine polymorphisms (rs34448891, rs7573065, rs2276631, rs3731865, rs17221959, rs2279015, rs17235409, rs17235416, rs17229009) that tag linkage disequilibrium blocks across SLC11A1 were genotyped in primary family-based (313 cases; 176 families) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between SLC11A1 variants and VL. Quantitative RT/PCR was used to compare SLC11A1 expression in mRNA from paired splenic aspirates taken before and after treatment from 24 VL patients carrying different genotypes at the functional promoter GTn polymorphism (rs34448891). RESULTS: No associations were observed between VL and polymorphisms at SLC11A1 that were either robust to correction for multiple testing or replicated across primary and replication samples. No differences in expression of SLC11A1 were observed when comparing pre- and post-treatment samples, or between individuals carrying different genotypes at the GTn repeat. CONCLUSIONS: This is the first well-powered study of SLC11A1 as a candidate for VL, which we conclude does not have a major role in regulating VL susceptibility in India.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    SLC11A1 (NRAMP1) Polymorphisms and Tuberculosis Susceptibility: Updated Systematic Review and Meta-Analysis

    Get PDF
    Background: Natural resistance associated macrophage protein 1 (NRAMP1), encoded by the SLC11A1 gene, has been described to regulate macrophage activation and be associated with infectious and autoimmune diseases. The relation between SLC11A1 polymorphisms and tuberculosis susceptibility has been studied in different populations. Methods: We systematically reviewed published studies on SLC11A1 polymorphisms and tuberculosis susceptibility until September 15, 2010 and quantitatively summarized associations of the most widely studied polymorphisms using metaanalysis. Results: In total, 36 eligible articles were included in this review. In Meta-analysis, significant associations were observed between tuberculosis risk and widely studied SLC11A1 polymorphisms with summarized odds ratio of 1.35 (95%CI, 1.17– 1.54), 1.25 (95 % CI, 1.04–1.50), 1.23 (95 % CI, 1.04–1.44), 1.31 (95%CI, 1.08–1.59) for 39 UTR, D543N, INT4, and 59 (GT)n, respectively. Heterogeneity between studies was not pronounced, and the associations did not remarkably vary in the stratified analysis with respect to study population and study base. Conclusions: The association between SLC11A1 polymorphisms and tuberculosis susceptibility observed in our analyses supports the hypothesis that NRAMP1 might play an important role in the host defense to the development of tuberculosis

    Family Relationship, Water Contact and Occurrence of Buruli Ulcer in Benin

    Get PDF
    Mycobacterium ulcerans disease (Buruli ulcer) is the most widespread mycobacterial disease in the world after leprosy and tuberculosis. How M. ulcerans is introduced into the skin of humans remains unclear, but it appears that individuals living in the same environment may have different susceptibilities. This case control study aims to determine whether frequent contacts with natural water sources, family relationship or the practice of consanguineous marriages are associated with the occurrence of Buruli ulcer (BU). The study involved 416 participants, of which 104 BU-confirmed cases and 312 age, gender and village of residence matched controls (persons who had no signs or symptoms of active or inactive BU). The results confirmed that contact with natural water sources is a risk factor. Furthermore, it suggests that a combination of genetic factors may constitute risk factors for the development of BU, possibly by influencing the type of immune response in the individual, and, consequently, the development of BU infection per se and its different clinical forms. These findings may be of major therapeutic interest

    Novel human genetic variants associated with extrapulmonary tuberculosis: a pilot genome wide association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approximately 5-10% of persons infected with <it>M. tuberculosis </it>develop tuberculosis, but the factors associated with disease progression are incompletely understood. Both linkage and association studies have identified human genetic variants associated with susceptibility to pulmonary tuberculosis, but few genetic studies have evaluated extrapulmonary disease. Because extrapulmonary and pulmonary tuberculosis likely have different underlying pathophysiology, identification of genetic mutations associated with extrapulmonary disease is important.</p> <p>Findings</p> <p>We performed a pilot genome-wide association study among 24 persons with previous extrapulmonary tuberculosis and well-characterized immune defects; 24 pulmonary tuberculosis patients and 57 patients with <it>M. tuberculosis </it>infection served as controls. The Affymetrix GeneChip Human Mapping Xba Array was used for genotyping; after careful quality control, genotypes at 44,175 single nucleotide polymorphisms (SNPs) were available for analysis. Eigenstrat quantified population stratification within our sample; logistic regression, using results of the Eigenstrat analysis as a covariate, identified significant associations between groups. Permutation testing controlled the family-wise error rate for each comparison between groups. Four SNPs were significantly associated with extrapulmonary tuberculosis compared to controls with <it>M. tuberculosis </it>infection; one (rs4893980) in the gene PDE11A, one (rs10488286) in KCND2, and one (rs2026414) in PCDH15; one was in chromosome 7 but not associated with a known gene. Two additional variants were significantly associated with extrapulmonary tuberculosis compared with pulmonary tuberculosis; one (rs340708) in the gene FAM135B and one in chromosome 13 but not associated with a known gene. The function of all four genes affects cell signaling and activity, including in the brain.</p> <p>Conclusions</p> <p>In this pilot study, we identified 6 novel variants not previously known to be associated with extrapulmonary tuberculosis, including two SNPs more common in persons with extrapulmonary than pulmonary tuberculosis. This provides some support for the hypothesis that the pathogenesis and genetic predisposition to extrapulmonary tuberculosis differs from pulmonary tuberculosis. Further study of these novel SNPs, and more well-powered genome-wide studies of extrapulmonary tuberculosis, is warranted.</p

    Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutrophils play an important role in the pathophysiology of RSV, though RSV does not appear to directly activate neutrophils in the lower airways. Therefore locally produced cytokines or other molecules released by virally-infected airway epithelial cells are likely responsible for recruiting and activating neutrophils. Heat shock proteins (HSPs) are generally regarded as intracellular proteins acting as molecular chaperones; however, HSP72 can also be released from cells, and the implications of this release are not fully understood.</p> <p>Methods</p> <p>Human bronchial epithelial cells (16HBE14o-) were infected with RSV and Hsp72 levels were measured by Western blot and ELISA. Tracheal aspirates were obtained from critically ill children infected with RSV and analyzed for Hsp72 levels by ELISA. Primary human neutrophils and differentiated HL-60 cells were cultured with Hsp72 and supernatants analyzed for cytokine production. In some cases, cells were pretreated with polymyxin B prior to treatment with Hsp72. IκBα was assessed by Western blot and EMSA's were performed to determine NF-κB activation. HL-60 cells were pretreated with neutralizing antibody against TLR4 prior to Hsp72 treatment. Neutrophils were harvested from the bone marrow of wild type or TLR4-deficient mice prior to treatment with Hsp72.</p> <p>Results</p> <p>Infection of 16HBE14o- with RSV showed an induction of intracellular Hsp72 levels as well as extracellular release of Hsp72. Primary human neutrophils from normal donors and differentiated HL-60 cells treated with increasing concentrations of Hsp72 resulted in increased cytokine (IL-8 and TNFα) production. This effect was independent of the low levels of endotoxin in the Hsp72 preparation. Hsp72 mediated cytokine production via activation of NF-κB translocation and DNA binding. Using bone marrow-derived neutrophils from wild type and TLR4-mutant mice, we showed that Hsp72 directly activates neutrophil-derived cytokine production via the activation of TLR4.</p> <p>Conclusion</p> <p>Collectively these data suggest that extracellular Hsp72 is released from virally infected airway epithelial cells resulting in the recruitment and activation of neutrophils.</p

    TLR4 Asp299Gly and Thr399Ile Polymorphisms: No Impact on Human Immune Responsiveness to LPS or Respiratory Syncytial Virus

    Get PDF
    A broad variety of natural environmental stimuli, genotypic influences and timing all contribute to expression of protective versus maladaptive immune responses and the resulting clinical outcomes in humans. The role of commonly co-segregating Toll-like receptor 4 (TLR4) non-synonymous single nucleotide polymorphisms Asp299Gly and Thr399Ile in this process remains highly controversial. Moreover, what differential impact these polymorphisms might have in at risk populations with respiratory dysfunction, such as current asthma or a history of infantile bronchiolitis, has never been examined. Here we determine the importance of these polymorphisms in modulating LPS and respiratory syncytial virus (RSV)--driven cytokine responses. We focus on both healthy children and those with clinically relevant respiratory dysfunction.To elucidate the impact of TLR4 Asp299Gly and Thr399Ile on cytokine production, we assessed multiple immune parameters in over 200 pediatric subjects aged 7-9. Genotyping was followed by quantification of pro- and anti-inflammatory cytokine responses by fresh peripheral blood mononuclear cells upon acute exposure to LPS or RSV.In contrast to early reports, neither SNP influenced immune responses evoked by LPS exposure or RSV infection, as measured by the intermediate phenotype of pro- and anti-inflammatory cytokine responses to these ubiquitous agents. There is no evidence of altered sensitivity in populations with "at risk" clinical phenotypes.Genomic medicine seeks to inform clinical practice. Determination of the TLR4 Asp299Gly/Thr399Ile haplotype is of no clinical benefit in predicting the nature or intensity of cytokine production in children whether currently healthy or among specific at-risk groups characterized by prior infantile broncholitis or current asthma

    Activation of an NLRP3 Inflammasome Restricts Mycobacterium kansasii Infection

    Get PDF
    Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii

    Novel concepts in virally induced asthma

    Get PDF
    Viruses are the predominant infectious cause of asthma exacerbations in the developed world. In addition, recent evidence strongly suggests that viral infections may also have a causal role in the development of childhood asthma. In this article, we will briefly describe the general perception of how the link between infections and asthma has changed over the last century, and then focus on very recent developments that have provided new insights into the contribution of viruses to asthma pathogenesis. Highlighted areas include the contribution of severe early life viral infections to asthma inception, genetic determinants of severe viral infections in infancy, the differences in innate and adaptive immune system cytokine responses to viral infection between asthmatic and nonasthmatic subjects, and a potential vaccine strategy to prevent severe early life virally-induced illness

    Genome Scan of M. tuberculosis Infection and Disease in Ugandans

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda, we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-); this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFα) expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193 pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p<10−3) was observed on chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome 20q13 for TB (p = 0.002). We also observed linkage at the nominal α = 0.05 threshold to a number of promising candidate genes, SLC11A1 (PTST- p = 0.02), IL-1 complex (TB p = 0.01), IL12BR2 (TNFα p = 0.006), IL12A (TB p = 0.02) and IFNGR2 (TNFα p = 0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of the innate immune system

    The D299G/T399I Toll-Like Receptor 4 Variant Associates with Body and Liver Fat: Results from the TULIP and METSIM Studies

    Get PDF
    BACKGROUND: Toll-like-receptor 4 (TLR) is discussed to provide a molecular link between obesity, inflammation and insulin resistance. Genetic studies with replications in non-diabetic individuals in regard to their fat distribution or insulin resistance according to their carrier status of a common toll-like receptor 4 (TLR4) variant (TLR4(D299G/T399I)) are still lacking. METHODOLOGY/PRINCIPAL FINDINGS: We performed a cross-sectional analysis in individuals phenotyped for prediabetic traits as body fat composition (including magnetic resonance imaging), blood glucose levels and insulin resistance (oral glucose tolerance testing, euglycemic hyperinsulinemic clamp), according to TLR4 genotype determined by candidate SNP analyses (rs4986790). We analyzed N = 1482 non-diabetic individuals from the TÜF/TULIP cohort (South Germany, aged 39±13 y, BMI 28.5±7.9, mean±SD) and N = 5327 non-diabetic participants of the METSIM study (Finland, males aged 58±6 y, BMI 26.8±3.8) for replication purposes. German TLR4(D299G/T399I) carriers had a significantly increased body fat (XG in rs4986790: +6.98%, p = 0.03, dominant model, adjusted for age, gender) and decreased insulin sensitivity (XG: -15.3%, Matsuda model, p = 0.04; XG: -20.6%, p = 0.016, clamp; both dominant models adjusted for age, gender, body fat). In addition, both liver fat (AG: +49.7%; p = 0.002) and visceral adipose tissue (AG: +8.2%; p = 0.047, both adjusted for age, gender, body fat) were significantly increased in rs4986790 minor allele carriers, and the effect on liver fat remained significant also after additional adjustment for visceral fat (p = 0.014). The analysis in METSIM confirmed increased body fat content in association with the rare G allele in rs4986790 (AG: +1.26%, GG: +11.0%; p = 0.010, additive model, adjusted for age) and showed a non-significant trend towards decreased insulin sensitivity (AG: -0.99%, GG: -10.62%). CONCLUSIONS/SIGNIFICANCE: TLR4(D299G/T399I) associates with increased total body fat, visceral fat, liver fat and decreased insulin sensitivity in non-diabetic Caucasians and may contribute to diabetes risk. This finding supports the role of TLR4 as a molecular link between obesity and insulin resistance
    corecore