36 research outputs found
Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and β-Catenin and Akt activation
Comparative anti-inflammatory and lipid-normalizing effects of metformin and omega-3 fatty acids through modulation of transcription factors in diabetic rats
T is associated with severe dyspepsia
Contains fulltext :
96333.pdf (publisher's version ) (Open Access
Protection of mouse bone marrow from etoposide-induced genomic damage by dexrazoxane
The objective of the current investigation is to determine whether non-toxic doses of the catalytic topoisomerase-II inhibitor, dexrazoxane, have influence on the genomic damage induced by the anticancer topoisomerase-II poison, etoposide, on mice bone marrow cells.
The scoring of micronuclei, chromosomal aberrations, and mitotic activity were undertaken as markers of cyto- and genotoxicity. Oxidative damage markers such as reduced glutathione and lipid peroxidation were assessed as a possible mechanism underlying this amelioration.
Dexrazoxane pre-treatment significantly reduced the etoposide-induced micronuclei formation, chromosomal aberrations, and also the suppression of erythroblast proliferation in bone marrow cells of mice. These effects were dose dependent. Etoposide induced marked biochemical alterations characteristic of oxidative stress including enhanced lipid peroxidation and reduction in the reduced glutathione level. Prior administration of dexrazoxane ahead of etoposide challenge ameliorated these biochemical markers.
Based on our data presented, strategies can be developed to decrease the etoposide-induced genomic damage in normal cells using dexrazoxane
Metformin attenuates streptozotocin-induced diabetic nephropathy in rats through modulation of oxidative stress genes expression.
Diabetes mellitus is a group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion and/or action. One of the most important complications of this metabolic disease is diabetic nephropathy. Hyperglycemia promotes oxidative stress and hence generation of reactive oxygen species (ROS), which is known to play a crucial role in the pathogenesis of diabetic nephropathy. Recent studies have established that metformin, an oral hypoglycemic drug, possesses antioxidant effects. However, whether metformin can protect against diabetic nephropathy has not been reported before. The overall objectives of the present study are to elucidate the potential nephroprotective effect of metformin in a rat diabetic nephropathy model and explore the exact underlying mechanism(s) involved. The effect of metformin on the biochemical changes associated with hyperglycemia induced by streptozotocin was investigated in rat kidney tissues. In addition, energy nucleotides (AMP and ATP), and Acetyl-CoA in the kidney homogenates and mitochondria, and the mRNA expression of oxidative stress and pro-inflammatory mediators were assessed. Our results showed that treatment of normoglycemic rats with metformin caused significant increase in ATP, Acetyl-CoA, and CoA-SH contents in kidney homogenates and mitochondria along with profound decrease in AMP level. On the other hand, treatment of diabetic nephropathy rats with metformin normalized all biochemical changes and the energy status in kidney tissues. At the transcriptional levels, metformin treatment caused significant restoration in diabetic nephropathy-induced oxidative stress mRNA levels, particularly GSTα, NQO1, and CAT genes, whereas inhibited TNF-α and IL-6 pro-inflammatory genes. Our data lend further credence for the contribution of metformin in the nephroprotective effect in addition to its well known hypoglycemic actio
Adenosine, Caffeine, and Performance: From Cognitive Neuroscience of Sleep to Sleep Pharmacogenetics
An intricate interplay between circadian and sleep-wake homeostatic processes regulate cognitive performance on specific tasks, and individual differences in circadian preference and sleep pressure may contribute to individual differences in distinct neurocognitive functions. Attentional performance appears to be particularly sensitive to time of day modulations and the effects of sleep deprivation. Consistent with the notion that the neuromodulator, adenosine adenosine , plays an important role in regulating sleep pressure, pharmacologic and genetic data in animals and humans demonstrate that differences in adenosinergic tone affect sleepiness, arousal and vigilant attention attention in rested and sleep-deprived states. Caffeine Caffeine -the most often consumed stimulant in the world-blocks adenosine receptors and normally attenuates the consequences of sleep deprivation on arousal, vigilance, and attention. Nevertheless, caffeine cannot substitute for sleep, and is virtually ineffective in mitigating the impact of severe sleep loss on higher-order cognitive functions. Thus, the available evidence suggests that adenosinergic mechanisms, in particular adenosine A2A receptor-mediated signal transduction, contribute to waking-induced impairments of attentional processes, whereas additional mechanisms must be involved in higher-order cognitive consequences of sleep deprivation. Future investigations should further clarify the exact types of cognitive processes affected by inappropriate sleep. This research will aid in the quest to better understand the role of different brain systems (e.g., adenosine and adenosine receptors) in regulating sleep, and sleep-related subjective state, and cognitive processes. Furthermore, it will provide more detail on the underlying mechanisms of the detrimental effects of extended wakefulness, as well as lead to the development of effective, evidence-based countermeasures against the health consequences of circadian misalignment and chronic sleep restriction
Changes in synaptic transmission of substantia gelatinosa neurons after spinal cord hemisection revealed by analysis using in vivo patch-clamp recording
BACKGROUND: After spinal cord injury, central neuropathic pain develops in the majority of spinal cord injury patients. Spinal hemisection in rats, which has been developed as an animal model of spinal cord injury in humans, results in hyperexcitation of spinal dorsal horn neurons soon after the hemisection and thereafter. The hyperexcitation is likely caused by permanent elimination of the descending pain systems. We examined the change in synaptic transmission of substantia gelatinosa neurons following acute spinal hemisection by using an in vivo whole-cell patch-clamp technique. RESULTS: An increased spontaneous action potential firings of substantia gelatinosa neurons was detected in hemisected rats compared with that in control animals. The frequencies and amplitudes of spontaneous excitatory postsynaptic currents and of evoked excitatory postsynaptic currentss in response to non-noxious and noxious stimuli were not different between hemisected and control animals. On the contrary, the amplitude and frequency of spontaneous inhibitory postsynaptic currents of substantia gelatinosa neurons in hemisected animals were significantly smaller and lower, respectively, than those in control animals (P < 0.01). Large amplitude and high-frequency spontaneous inhibitory postsynaptic currents, which could not be elicited by mechanical stimuli, were seen in 44% of substantia gelatinosa neurons in control animals but only in 17% of substantia gelatinosa neurons in hemisected animals. In control animals, such large amplitude spontaneous inhibitory postsynaptic currents were suppressed by spinal application of tetrodotoxin (1 µM). Cervical application of lidocaine (2%, 10 µl) also inhibited such large amplitude of inhibitory postsynaptic currents. The proportion of multi-receptive substantia gelatinosa neurons, which exhibit action potential firing in response to non-noxious and noxious stimuli, was much larger in hemisected animals than in control animals. CONCLUSIONS: These suggest that substantia gelatinosa neurons receive tonic inhibition by spinal inhibitory interneurons which generate persistent action potentials. Spinal hemisection results in hyperexcitation of substantia gelatinosa neurons at least in part by eliminating the tonic descending control of spinal inhibitory interneurons from supraspinal levels
