16 research outputs found

    Endogenous regulation of a therapeutic transgene restores homeostasis in arthritic joints

    Get PDF
    The treatment of chronic inflammatory diseases is complicated by their unpredictable, relapsing clinical course. Here, we describe a new strategy in which an inflammation-regulated therapeutic transgene is introduced into the joints to prevent recurrence of arthritis. To this end, we designed a recombinant adenoviral vector containing a two-component, inflammation-inducible promoter controlling the expression of human IL-10 (hIL-10) cDNA. When tested in vitro, this system had a low-level basal activity and was activated four to five orders of magnitude by various inflammatory stimuli, including TNF-α, IL-1β, IL-6, and LPS. When introduced in joints of rats with recurrent streptococcal cell wall–induced arthritis, the IL-10 transgene was induced in parallel with disease recurrence and effectively prevented the influx of inflammatory cells and the associated swelling of the joints. Levels of inflammation-inducible hIL-10 protein within the joints correlated closely with the severity of recurrence. An endogenously regulated therapeutic transgene can thus establish negative feedback and restore homeostasis in vivo while minimizing host exposure to the recombinant drug

    C3-Tat/HIV-regulated intraarticular human interleukin-1 receptor antagonist gene therapy results in efficient inhibition of collagen-induced arthritis superior to cytomegalovirus-regulated expression of the same transgene.

    No full text
    Item does not contain fulltextOBJECTIVE: To achieve disease-inducible expression of recombinant antiinflammatory proteins in order to allow autoregulation of drug dose by natural homeostatic mechanisms. METHODS: We compared the inducible 2-component expression system (C3-human immunodeficiency virus/transactivator of transcription [C3-Tat/HIV]) with the constitutive cytomegalovirus (CMV) promoter in the polyarticular collagen-induced arthritis (CIA) model in mice. DBA/1 mice were immunized with bovine type II collagen and were given boosters on day 21. On day 22, mice were injected intraarticularly with the adenoviral vectors AdCMVLuc, AdCMVhIL-1Ra, AdC3-Tat/HIV-Luc, or AdC3-Tat/HIV-hIL-1Ra. The injected knee joints and hind paws were then scored for signs of arthritis, and knee joint histology was compared. RESULTS: The CMV-driven interleukin-1 receptor antagonist (IL-1Ra) expression resulted in a high constitutive expression and amelioration of CIA. C3-Tat/HIV-driven IL-1Ra expression could be detected only on days 24, 29, and 35. Fourteen days after injection of the vectors, CIA was significantly better inhibited by the C3-Tat/HIV-driven IL-1Ra expression compared with the CMV-driven IL-1Ra expression. Moreover, prevention of CIA in the knee joints also prevented CIA in the untreated hind paws. CONCLUSION: Our data demonstrate for the first time the feasibility of an inducible expression system for local production of IL-1Ra for treatment of arthritis in the CIA model
    corecore