8 research outputs found

    Proximity Effect and Multiple Andreev Reflections in Chaotic Josephson junctions

    Full text link
    We study the dc-current transport in a voltage biased superconductor-chaotic dot-superconductor junction with an induced proximity effect(PE) in the dot. It is found that for a Thouless energy EThE_{Th} of the dot smaller than the superconducting energy gap Δ\Delta, the PE is manifested as peaks in the differential conductance at voltages of order EThE_{Th} away from the even subharmonic gap structures eV≈2(Δ±ETh)/2neV \approx 2(\Delta\pm E_{Th})/2n. These peaks are insensitive to temperatures kT≪ΔkT \ll \Delta but are suppressed by a weak magnetic field. The current for suppressed PE is independent of EThE_{Th} and magnetic field and is shown to be given by the Octavio-Tinkham-Blonder-Klapwijk theory.Comment: 4 pages, 3 figure

    Mesoscopic proximity effect in double barrier Superconductor/Normal Metal junctions

    Full text link
    We report transport measurements down to T=60mK of SININ and SNIN structures in the diffusive limit. We fabricated Al-AlOx/Cu/AlOx/Cu (SININ) and Al/Cu/AlOx/Cu (SNIN) vertical junctions. For the first time, a zero bias anomaly was observed in a metallic SININ structure. We attribute this peak of conductance to coherent multi-reflections of electrons between the two tunnel barriers. This conductance maximum is quantitatively fitted by the relevant theory of mesoscopic SININ structures. When the barrier at the SN interface is removed (SNIN structure), we observe a peak of conductance at finite voltage accompagnied by an excess of sub-gap conductance.Comment: 4 pages, 4 figures, editorially approved for publication in Phys. Rev. B Rapid Com

    Hamiltonian approach to the ac Josephson effect in superconducting-normal hybrid systems

    Get PDF
    The ac Josephson effect in hybrid systems of a normal mesoscopic conductor coupled to two superconducting (S) leads is investigated theoretically. A general formula of the ac components of time-dependent current is derived which is valid for arbitrary interactions in the normal region. We apply this formula to analyze a S-normal-S system where the normal region is a noninteracting single level quantum dot. We report the physical behavior of time-averaged nonequilibrium distribution of electrons in the quantum dot, the formation of Andreev bound states, and ac components of the time-dependent current. The distribution is found to exhibit a population inversion; and all Andreev bound states between the superconducting gap Δ\Delta carry the same amount of current and in the same flow direction. The ac components of time-dependent current show strong oscillatory behavior in marked contrast to the subharmonic gap structure of the average current.Comment: 23 pages, 10 figures, LaTe

    Multiple Andreev Reflection and Giant Excess Noise in Diffusive Superconductor/Normal-Metal/Superconductor Junctions

    Get PDF
    We have studied superconductor/normal metal/superconductor (SNS) junctions consisting of short Au or Cu wires between Nb or Al banks. The Nb based junctions display inherent electron heating effects induced by the high thermal resistance of the NS boundaries. The Al based junctions show in addition subharmonic gap structures in the differential conductance dI/dV and a pronounced peak in the excess noise at very low voltages V. We suggest that the noise peak is caused by fluctuations of the supercurrent at the onset of Josephson coupling between the superconducting banks. At intermediate temperatures where the supercurrent is suppressed a noise contribution ~1/V remains, which may be interpreted as shot noise originating from large multiple charges.Comment: 7 pages, 7 figures, extended versio

    Non-Equilibrium Quasiclassical Theory for Josephson Structures

    Full text link
    We present a non-equilibrium quasiclassical formalism suitable for studying linear response ac properties of Josephson junctions. The non-equilibrium self-consistency equations are satisfied, to very good accuracy, already in zeroth iteration. We use the formalism to study ac Josephson effect in a ballistic superconducting point contact. The real and imaginary parts of the ac linear conductance are calculated both analytically (at low frequencies) and numerically (at arbitrary frequency). They show strong temperature, frequency, and phase dependence. Many anomalous properties appear near phi = pi. We ascribe them to the presence of zero energy bound states.Comment: 11 pages, 9 figures, Final version to appear in PR
    corecore