72 research outputs found

    Preparation and Solid-state Structural, Electronic, and Magnetic Properties of the 5-Cyano-1,3-benzene-Bridged Bis(1,2,3,5-dithiadiazolyl) and Bis(1,2,3,5-diselenadiazolyl) [5-CN-1,3-C6H3(CN2E2)2] (E = S, Se)

    Get PDF
    The preparation and solid-state characterization of the bifunctional radicals [4,4’-(5-cyanobenzene)-1,3-bis(1,2,3,5-dithiadiazolyl)] and [4,4’-(5-cyanobenzene)-1,3-bis( 1,2,3,5-diselenadiazolyl)] [5-CN-1,3-C6H3(CN2E2)2] (E = S, Se) are described. The crystals of the two title compounds are isomorphous and belong to the monoclinic space group P21/c, with (for E = S) a = 7.00(2), b = 30.050(6), c = 10.713(8) Å, β = 104.80(10)°, V = 2179(6) Å3, Z = 8 and (for E = Se) a = 7.124(4), b = 30.50(2), c = 10.874(2) Å, β = 105.46(3)°, V = 2277(2) Å3, Z = 8. The crystal structures consist of stacks of diradicals running parallel to x; radical dimerization up and down the stack generates a zigzag arrangement, as seen in the related 1,3-phenylene structures. Along the stacking axis the mean intradimer E-E contacts are 3.12 (E = S) and 3.23 Å (E = Se), while the mean interdimer E- - -E distances are 3.89 (E = S) and 3.91 Å (E = Se). Magnetic and conductivity data are presented and discussed in light of extended Hückel band structure calculations

    Stability of the lattice formed in first-order phase transitions to matter containing strangeness in protoneutron stars

    Full text link
    Well into the deleptonization phase of a core collapse supernova, a first-order phase transition to matter with macroscopic strangeness content is assumed to occur and lead to a structured lattice defined by negatively charged strange droplets. The lattice is shown to crystallize for expected droplet charges and separations at temperatures typically obtained during the protoneutronstar evolution. The melting curve of the lattice for small spherical droplets is presented. The one-component plasma model proves to be an adequate description for the lattice in its solid phase with deformation modes freezing out around the melting temperature. The mechanical stability against shear stresses is such that velocities predicted for convective phenomena and differential rotation during the Kelvin-Helmholtz cooling phase might prevent the crystallization of the phase transition lattice. A solid lattice might be fractured by transient convection, which could result in anisotropic neutrino transport. The melting curve of the lattice is relevant for the mechanical evolution of the protoneutronstar and therefore should be included in future hydrodynamics simulations.Comment: accepted for publication in Physical Review

    Molecular Conductors from Neutral-Radical Charge-Transfer Salts:Preparation and Characterization of an Iodine-Doped Hexagonal Phase of 1,2,3,5-Dithiadiazolyl ([HCN2S2]∙)

    Get PDF
    Sublimation of 1,2,3,5-dithiadiazolyl in vacuo affords a triclinic phase of the dimer [HCN2S2]2. The crystals belong to the space group P¯1, a = 6.816(3), b = 13.940(2), c = 14.403(3) Å, α = 116.830(14), β = 98.64(3), γ = 99.18(3)°, FW = 212.4 (for [HCN2S2]2·[N2]0.08) Z = 6. The crystal structure consists of stacked dimers, with three dimers per asymmetric unit. Pairs of asymmetric units, related by an inversion center, generate a pinwheel motif consisting of six dimers. The columnar structure associated with these pinwheels forms close-packed sets of “molecular tubes”. Cosublimation of the radical in the presence of iodine in the mole ratio (HCN2S2:I = 5:1) yields an iodine-doped hexagonal phase of composition [HCN2S2]6[I]1.1. Crystals of this material belong to the space group P61, a = b = 14.132(16), c = 3.352(5) Å, FW = 128.20, Z = 6. The crystal structure consists of sixfold pinwheels in which the now evenly spaced HCN2S2 rings form a spiral about the 61 axis. The iodine atoms lie within the columnar cavity of the pinwheels in a disordered array wrapped tightly about the sixfold screw axis. The single-crystal conductivity of the doped material is 15 S cm-1 at room temperature. Raman spectroscopic and magnetic susceptibility measurements on the doped material are reported

    Recent glitches detected in the Crab pulsar

    Full text link
    From 2000 to 2010, monitoring of radio emission from the Crab pulsar at Xinjiang Observatory detected a total of nine glitches. The occurrence of glitches appears to be a random process as described by previous researches. A persistent change in pulse frequency and pulse frequency derivative after each glitch was found. There is no obvious correlation between glitch sizes and the time since last glitch. For these glitches Δνp\Delta\nu_{p} and Δν˙p\Delta\dot{\nu}_{p} span two orders of magnitude. The pulsar suffered the largest frequency jump ever seen on MJD 53067.1. The size of the glitch is \sim 6.8 ×106\times 10^{-6} Hz, \sim 3.5 times that of the glitch occured in 1989 glitch, with a very large permanent changes in frequency and pulse frequency derivative and followed by a decay with time constant \sim 21 days. The braking index presents significant changes. We attribute this variation to a varying particle wind strength which may be caused by glitch activities. We discuss the properties of detected glitches in Crab pulsar and compare them with glitches in the Vela pulsar.Comment: Accepted for publication in Astrophysics & Space Scienc

    Pre-M Phase-promoting Factor Associates with Annulate Lamellae in Xenopus Oocytes and Egg Extracts

    Get PDF
    We have used complementary biochemical and in vivo approaches to study the compartmentalization of M phase-promoting factor (MPF) in prophase Xenopus eggs and oocytes. We first examined the distribution of MPF (Cdc2/CyclinB2) and membranous organelles in high-speed extracts of Xenopus eggs made during mitotic prophase. These extracts were found to lack mitochondria, Golgi membranes, and most endoplasmic reticulum (ER) but to contain the bulk of the pre-MPF pool. This pre-MPF could be pelleted by further centrifugation along with components necessary to activate it. On activation, Cdc2/CyclinB2 moved into the soluble fraction. Electron microscopy and Western blot analysis showed that the pre-MPF pellet contained a specific ER subdomain comprising "annulate lamellae" (AL): stacked ER membranes highly enriched in nuclear pores. Colocalization of pre-MPF with AL was demonstrated by anti-CyclinB2 immunofluorescence in prophase oocytes, in which AL are positioned close to the vegetal surface. Green fluorescent protein-CyclinB2 expressed in oocytes also localized at AL. These data suggest that inactive MPF associates with nuclear envelope components just before activation. This association may explain why nuclei and centrosomes stimulate MPF activation and provide a mechanism for targeting of MPF to some of its key substrates

    Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons

    Get PDF
    Pulsars with high spin-down power produce relativistic winds radiating a non-negligible fraction of this power over the whole electromagnetic range from radio to gamma-rays in the pulsar wind nebulae (PWNe). The rest of the power is dissipated in the interactions of the PWNe with the ambient interstellar medium (ISM). Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks. In this case, the ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system formed by the plasma outflowing from the wind termination shock and the plasma inflowing from the bow shock. The presence of magnetic perturbations in the flow, produced by instabilities induced by the accelerated particles themselves, is essential for the process to work. A generic outcome of this type of reacceleration is the creation of particle distributions with very hard spectra, such as are indeed required to explain the observed spectra of synchrotron radiation with photon indices Γ≲ 1.5. The presence of this hard spectral component is specific to PWNe with bow shocks (BSPWNe). The accelerated particles, mainly electrons and positrons, may end up containing a substantial fraction of the shock ram pressure. In addition, for typical ISM and pulsar parameters, the e+ released by these systems in the Galaxy are numerous enough to contribute a substantial fraction of the positrons detected as cosmic ray (CR) particles above few tens of GeV and up to several hundred GeV. The escape of ultrarelativistic particles from a BSPWN—and hence, its appearance in the far-UV and X-ray bands—is determined by the relative directions of the interstellar magnetic field, the velocity of the astrosphere and the pulsar rotation axis. In this respect we review the observed appearance and multiwavelength spectra of three different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae, and Vela-like objects. We argue that high resolution imaging of such objects provides unique information both on pulsar winds and on the ISM. We discuss the interpretation of imaging observations in the context of the model outlined above and estimate the BSPWN contribution to the positron flux observed at the Earth

    The polarized image of a synchrotron-emitting ring of gas orbiting a black hole

    Get PDF
    High Energy Astrophysic

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    InstrumentationHigh Energy Astrophysic

    The variability of the black hole image in M87 at the dynamical timescale

    Get PDF
    The black hole images obtained with the Event Horizon Telescope (EHT) are expected to be variable at the dynamical timescale near their horizons. For the black hole at the center of the M87 galaxy, this timescale (5–61 days) is comparable to the 6 day extent of the 2017 EHT observations. Closure phases along baseline triangles are robust interferometric observables that are sensitive to the expected structural changes of the images but are free of station-based atmospheric and instrumental errors. We explored the day-to-day variability in closure-phase measurements on all six linearly independent nontrivial baseline triangles that can be formed from the 2017 observations. We showed that three triangles exhibit very low day-to-day variability, with a dispersion of ∼3°–5°. The only triangles that exhibit substantially higher variability (∼90°–180°) are the ones with baselines that cross the visibility amplitude minima on the u–v plane, as expected from theoretical modeling. We used two sets of general relativistic magnetohydrodynamic simulations to explore the dependence of the predicted variability on various black hole and accretion-flow parameters. We found that changing the magnetic field configuration, electron temperature model, or black hole spin has a marginal effect on the model consistency with the observed level of variability. On the other hand, the most discriminating image characteristic of models is the fractional width of the bright ring of emission. Models that best reproduce the observed small level of variability are characterized by thin ring-like images with structures dominated by gravitational lensing effects and thus least affected by turbulence in the accreting plasmas.https://iopscience.iop.org/article/10.3847/1538-4357/ac332e/pdfPublished versio
    corecore