70 research outputs found

    Breaking rotational symmetry in two-flavor color superconductors

    Full text link
    The color superconductivity under flavor asymmetric conditions relevant to the compact star phenomenology is studied within the Nambu-Jona-Lasinio model. We focus on the effect of the deformation of the Fermi surfaces on the pairing properties and the energy budget of the superconducting state. We find that at finite flavor asymmetries the color superconducting BCS state is unstable towards spontaneous quadrupole deformation of the Fermi surfaces of the dd and uu quarks into ellipsoidal form. The ground state of the phase with deformed Fermi surfaces corresponds to a superposition of prolate and oblate deformed Fermi ellipsoids of dd and uu quarks.Comment: 6 pages, 4 figures. Parameter changes, references added, conclusions unchange

    The Use of Case Study Competitions to Prepare Students for the World of Work

    Get PDF
    As we continue into the new millennium, it is imperative that educational institutions equip graduates with the knowledge and skills that are increasingly needed and valued by business and industry. In this article, the authors argue that the case study approach and, specifically, case study competitions constitute an ideal pedagogical strategy for achieving this objective in an effective and efficient manner, with resulting benefits for both students and employers

    Breached Pairing Superfluidity at Finite Temperature and Density

    Full text link
    A general analysis on Fermion pairing at finite temperature and density between different species with mismatched Fermi surfaces is presented. Very different from the temperature effect of BCS phase, the recently found breached pairing phase resulted from density difference of the two species lies in a region with calabash-like shape in the T−μT-\mu plane, and the most probable temperature for the new phase's creation is finite but not zero.Comment: 5 papes, 5 figures. Comments are welcome to [email protected]

    Color-Neutral Superconducting Quark Matter

    Full text link
    We investigate the consequences of enforcing local color neutrality on the color superconducting phases of quark matter by utilizing the Nambu-Jona-Lasinio model supplemented by diquark and the t'Hooft six-fermion interactions. In neutrino free matter at zero temperature, color neutrality guarantees that the number densities of u, d, and s quarks in the Color-Flavor-Locked (CFL) phase will be equal even with physical current quark masses. Electric charge neutrality follows as a consequence and without the presence of electrons. In contrast, electric charge neutrality in the less symmetric 2-flavor superconducting (2SC) phase with ud pairing requires more electrons than the normal quark phase. The free energy density cost of enforcing color and electric charge neutrality in the CFL phase is lower than that in the 2SC phase, which favors the formation of the CFL phase. With increasing temperature and neutrino content, an unlocking transition occurs from the CFL phase to the 2SC phase with the order of the transition depending on the temperature, the quark and lepton number chemical potentials. The astrophysical implications of this rich structure in the phase diagram, including estimates of the effects from Goldstone bosons in the CFL phase, are discussed.Comment: 20 pages, 4 figures; version to appear in Phys. Rev.

    A Note on Seabed Irradiance in Shallow Tidal Seas

    No full text

    Electrical Design Optimization of Single-Mode Tunnel-Junction-Based Long-Wavelength VCSELs

    No full text

    A continuous-wave hybrid AlGaInAs-silicon evanescent laser

    No full text
    • …
    corecore