2 research outputs found

    Fractional Moment Estimates for Random Unitary Operators

    Full text link
    We consider unitary analogs of d−d-dimensional Anderson models on l2(Zd)l^2(\Z^d) defined by the product Uω=DωSU_\omega=D_\omega S where SS is a deterministic unitary and DωD_\omega is a diagonal matrix of i.i.d. random phases. The operator SS is an absolutely continuous band matrix which depends on parameters controlling the size of its off-diagonal elements. We adapt the method of Aizenman-Molchanov to get exponential estimates on fractional moments of the matrix elements of Uω(Uω−z)−1U_\omega(U_\omega -z)^{-1}, provided the distribution of phases is absolutely continuous and the parameters correspond to small off-diagonal elements of SS. Such estimates imply almost sure localization for UωU_\omega

    Localization for Random Unitary Operators

    Full text link
    We consider unitary analogs of 1−1-dimensional Anderson models on l2(Z)l^2(\Z) defined by the product Uω=DωSU_\omega=D_\omega S where SS is a deterministic unitary and DωD_\omega is a diagonal matrix of i.i.d. random phases. The operator SS is an absolutely continuous band matrix which depends on a parameter controlling the size of its off-diagonal elements. We prove that the spectrum of UωU_\omega is pure point almost surely for all values of the parameter of SS. We provide similar results for unitary operators defined on l2(N)l^2(\N) together with an application to orthogonal polynomials on the unit circle. We get almost sure localization for polynomials characterized by Verblunski coefficients of constant modulus and correlated random phases
    corecore