58 research outputs found
Tolerating Inconsistencies: A Study of Logic of Moral Conflicts
Moral conflicts are the situations which emerge as a response to deal with conflicting obligations or duties. An interesting case arises when an agent thinks that two obligations A and B are equally important, but yet fails to choose one obligation over the other. Despite the fact that the systematic study and the resolution of moral conflicts finds prominence in our linguistic discourse, standard deontic logic when used to represent moral conflicts, implies the impossibility of moral conflicts. This presents a conundrum for appropriate logic to address these moral conflicts. We frequently believe that there is a close connection between tolerating inconsistencies and conflicting moral obligations. In paraconsistent logics, we tolerate inconsistencies by treating them to be both true and false. In this paper, we analyze Graham Priest’s paraconsistent logic LP, and extend our examination to the deontic extension of LP known as DLP. We illustrate our work, with a classic example from the famous Indian epic Mahabharata, where the protagonist Arjuna faces a moral conflict in the battlefield of Kurukshetra. The paper aims to avoid deontic explosion and allows to accommodate Arjuna’s moral conflict in paraconsistent deontic logics. Our analysis is expected to provide novel tools towards the logical representation of moral conflicts and to shed some light on the context-sensitive paraconsistent deontic logic
Inelastic lifetimes of confined two-component electron systems in semiconductor quantum wire and quantum well structures
We calculate Coulomb scattering lifetimes of electrons in two-subband quantum
wires and in double-layer quantum wells by obtaining the quasiparticle
self-energy within the framework of the random-phase approximation for the
dynamical dielectric function. We show that, in contrast to a single-subband
quantum wire, the scattering rate in a two-subband quantum wire contains
contributions from both particle-hole excitations and plasmon excitations. For
double-layer quantum well structures, we examine individual contributions to
the scattering rate from quasiparticle as well as acoustic and optical plasmon
excitations at different electron densities and layer separations. We find that
the acoustic plasmon contribution in the two-component electron system does not
introduce any qualitatively new correction to the low energy inelastic
lifetime, and, in particular, does not produce the linear energy dependence of
carrier scattering rate as observed in the normal state of high-
superconductors.Comment: 16 pages, RevTeX, 7 figures. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Theory of nuclear induced spectral diffusion: Spin decoherence of phosphorus donors in Si and GaAs quantum dots
We propose a model for spectral diffusion of localized spins in
semiconductors due to the dipolar fluctuations of lattice nuclear spins. Each
nuclear spin flip-flop is assumed to be independent, the rate for this process
being calculated by a method of moments. Our calculated spin decoherence time
ms for donor electron spins in Si:P is a factor of two longer than
spin echo decay measurements. For P nuclear spins we show that spectral
diffusion is well into the motional narrowing regime. The calculation for GaAs
quantum dots gives s depending on the quantum dot size. Our
theory indicates that nuclear induced spectral diffusion should not be a
serious problem in developing spin-based semiconductor quantum computer
architectures.Comment: 15 pages, 9 figures. Accepted for publication in Phys. Rev.
Coulomb scattering lifetime of a two-dimensional electron gas
Motivated by a recent tunneling experiment in a double quantum-well system,
which reports an anomalously enhanced electronic scattering rate in a clean
two-dimensional electron gas, we calculate the inelastic quasiparticle lifetime
due to electron-electron interaction in a single loop dynamically screened
Coulomb interaction within the random-phase-approximation. We obtain excellent
quantitative agreement with the inelastic scattering rates in the tunneling
experiment without any adjustable parameter, finding that the reported large
( a factor of six) disagreement between theory and experiment arises from
quantitative errors in the existing theoretical work and from the off-shell
energy dependence of the electron self-energy.Comment: 11 pages, RevTex, figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Electron spin coherence in semiconductors: Considerations for a spin-based solid state quantum computer architecture
We theoretically consider coherence times for spins in two quantum computer
architectures, where the qubit is the spin of an electron bound to a P donor
impurity in Si or within a GaAs quantum dot. We show that low temperature
decoherence is dominated by spin-spin interactions, through spectral diffusion
and dipolar flip-flop mechanisms. These contributions lead to 1-100 s
calculated spin coherence times for a wide range of parameters, much higher
than former estimates based on measurements.Comment: Role of the dipolar interaction clarified; Included discussion on the
approximations employed in the spectral diffusion calculation. Final version
to appear in Phys. Rev.
Quantum critical point and scaling in a layered array of ultrasmall Josephson junctions
We have studied a quantum Hamiltonian that models an array of ultrasmall
Josephson junctions with short range Josephson couplings, , and charging
energies, , due to the small capacitance of the junctions. We derive a new
effective quantum spherical model for the array Hamiltonian. As an application
we start by approximating the capacitance matrix by its self-capacitive limit
and in the presence of an external uniform background of charges, . In
this limit we obtain the zero-temperature superconductor-insulator phase
diagram, , that improves upon previous theoretical
results that used a mean field theory approximation. Next we obtain a
closed-form expression for the conductivity of a square array, and derive a
universal scaling relation valid about the zero--temperature quantum critical
point. In the latter regime the energy scale is determined by temperature and
we establish universal scaling forms for the frequency dependence of the
conductivity.Comment: 18 pages, four Postscript figures, REVTEX style, Physical Review B
1999. We have added one important reference to this version of the pape
Nuclear spin relaxation probed by a single quantum dot
We present measurements on nuclear spin relaxation probed by a single quantum
dot in a high-mobility electron gas. Current passing through the dot leads to a
spin transfer from the electronic to the nuclear spin system. Applying electron
spin resonance the transfer mechanism can directly be tuned. Additionally, the
dependence of nuclear spin relaxation on the dot gate voltage is observed. We
find electron-nuclear relaxation times of the order of 10 minutes
Competing orders in a magnetic field: spin and charge order in the cuprate superconductors
We describe two-dimensional quantum spin fluctuations in a superconducting
Abrikosov flux lattice induced by a magnetic field applied to a doped Mott
insulator. Complete numerical solutions of a self-consistent large N theory
provide detailed information on the phase diagram and on the spatial structure
of the dynamic spin spectrum. Our results apply to phases with and without
long-range spin density wave order and to the magnetic quantum critical point
separating these phases. We discuss the relationship of our results to a number
of recent neutron scattering measurements on the cuprate superconductors in the
presence of an applied field. We compute the pinning of static charge order by
the vortex cores in the `spin gap' phase where the spin order remains
dynamically fluctuating, and argue that these results apply to recent scanning
tunnelling microscopy (STM) measurements. We show that with a single typical
set of values for the coupling constants, our model describes the field
dependence of the elastic neutron scattering intensities, the absence of
satellite Bragg peaks associated with the vortex lattice in existing neutron
scattering observations, and the spatial extent of charge order in STM
observations. We mention implications of our theory for NMR experiments. We
also present a theoretical discussion of more exotic states that can be built
out of the spin and charge order parameters, including spin nematics and phases
with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see
http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new
work of Chen and Ting; (v3) reorganized presentation for improved clarity,
and added new appendix on microscopic origin; (v4) final published version
with minor change
Electron spin as a spectrometer of nuclear spin noise and other fluctuations
This chapter describes the relationship between low frequency noise and
coherence decay of localized spins in semiconductors. Section 2 establishes a
direct relationship between an arbitrary noise spectral function and spin
coherence as measured by a number of pulse spin resonance sequences. Section 3
describes the electron-nuclear spin Hamiltonian, including isotropic and
anisotropic hyperfine interactions, inter-nuclear dipolar interactions, and the
effective Hamiltonian for nuclear-nuclear coupling mediated by the electron
spin hyperfine interaction. Section 4 describes a microscopic calculation of
the nuclear spin noise spectrum arising due to nuclear spin dipolar flip-flops
with quasiparticle broadening included. Section 5 compares our explicit
numerical results to electron spin echo decay experiments for phosphorus doped
silicon in natural and nuclear spin enriched samples.Comment: Book chapter in "Electron spin resonance and related phenomena in low
dimensional structures", edited by Marco Fanciulli. To be published by
Springer-Verlag in the TAP series. 35 pages, 9 figure
- …