168 research outputs found

    Plasma influence on the neutrino - electron processes in a strong magnetic field

    Full text link
    An influence of the magnetized electron - positron plasma on the absorption and loss of the energy and momentum in a process of neutrino propagation is investigated. A total contribution of all crossed processes, ννee+\nu \to \nu e^- e^+, νeνe\nu e^- \to \nu e^-, νe+νe+\nu e^+ \to \nu e^+, νee+ν\nu e^- e^+ \to \nu, is found for the first time, which appears not to depend on the chemical potential of electron-positron gas. Relatively simple expressions for the probability and mean losses of the neutrino energy and momentum are obtained, which are suitable for a quantitative analysis.Comment: 8 pages, 1 ps figure, LaTeX, uses espcrc2.sty,epsf.sty, based on the talks presented at the Xth International Baksan School "Particles and Cosmology", Baksan Valley, Kabardino Balkaria, Russia, April 19-25, 1999 and the International Workshop "Particles in Astrophysics and Cosmology: From Theory to Observation", Valencia, Spain, May 3-8, 199

    Gauge Invariant Variational Approach with Fermions: the Schwinger Model

    Get PDF
    We extend the gauge invariant variational approach of Phys. Rev. D52 (1995) 3719, hep-th/9408081, to theories with fermions. As the simplest example we consider the massless Schwinger model in 1+1 dimensions. We show that in this solvable model the simple variational calculation gives exact results.Comment: 14 pages, 1 figur

    Influence of nonlocal electrodynamics on the anisotropic vortex pinning in YNi2B2CYNi_2B_2C

    Full text link
    We have studied the pinning force density Fp of YNi_2B_2C superconductors for various field orientations. We observe anisotropies both between the c-axis and the basal plane and within the plane, that cannot be explained by usual mass anisotropy. For magnetic field HcH \parallel c, the reorientation structural transition in the vortex lattice due to nonlocality, which occurs at a field H11kOeH_1 \sim 1kOe, manifests itself as a kink in Fp(H). When HcH \bot c, Fp is much larger and has a quite different H dependence, indicating that other pinning mechanisms are present. In this case the signature of nonlocal effects is the presence of a fourfold periodicity of Fp within the basal plane.Comment: 4 pages, 3 figure

    Large closed queueing networks in semi-Markov environment and its application

    Full text link
    The paper studies closed queueing networks containing a server station and kk client stations. The server station is an infinite server queueing system, and client stations are single-server queueing systems with autonomous service, i.e. every client station serves customers (units) only at random instants generated by a strictly stationary and ergodic sequence of random variables. The total number of units in the network is NN. The expected times between departures in client stations are (Nμj)1(N\mu_j)^{-1}. After a service completion in the server station, a unit is transmitted to the jjth client station with probability pjp_{j} (j=1,2,...,k)(j=1,2,...,k), and being processed in the jjth client station, the unit returns to the server station. The network is assumed to be in a semi-Markov environment. A semi-Markov environment is defined by a finite or countable infinite Markov chain and by sequences of independent and identically distributed random variables. Then the routing probabilities pjp_{j} (j=1,2,...,k)(j=1,2,...,k) and transmission rates (which are expressed via parameters of the network) depend on a Markov state of the environment. The paper studies the queue-length processes in client stations of this network and is aimed to the analysis of performance measures associated with this network. The questions risen in this paper have immediate relation to quality control of complex telecommunication networks, and the obtained results are expected to lead to the solutions to many practical problems of this area of research.Comment: 35 pages, 1 figure, 12pt, accepted: Acta Appl. Mat

    Neutrino-electron processes in a dense magnetized plasma

    Get PDF
    The neutrino-electron scattering in a dense degenerate magnetized plasma under the conditions μ2>2eBμE\mu^2 > 2eB \gg \mu E is investigated. The volume density of the neutrino energy and momentum losses due to this process are calculated. The results we have obtained demonstrate that plasma in the presence of an external magnetic field is more transparent for neutrino than non-magnetized plasma. It is shown that neutrino scattering under conditions considered does not lead to the neutrino force acting on plasma.Comment: 11 pages, LATEX, to be published in Central European Science Journa

    Macroscopic anisotropy in superconductors with anisotropic gaps

    Full text link
    It is shown within the weak-coupling model that the macroscopic superconducting anisotropy for materials with the gap varying on the Fermi surface cannot be characterized by a single number, unlike the case of clean materials with isotropic gaps. For clean uniaxial materials, the anisotropy parameter γ(T)\gamma (T) defined as the ratio of London penetration depths, λc/λab\lambda_c/\lambda_{ab}, is evaluated for all TT's. Within the two-gap model of MgB2_2, γ(T)\gamma (T) is an increasing function of TT.Comment: 4 pages, 2 figure

    Confinement-Deconfinement Transition in 3-Dimensional QED

    Full text link
    We argue that, at finite temperature, parity invariant non-compact electrodynamics with massive electrons in 2+1 dimensions can exist in both confined and deconfined phases. We show that an order parameter for the confinement-deconfinement phase transition is the Polyakov loop operator whose average measures the free energy of a test charge that is not an integral multiple of the electron charge. The effective field theory for the Polyakov loop operator is a 2-dimensional Euclidean scalar field theory with a global discrete symmetry ZZ, the additive group of the integers. We argue that the realization of this symmetry governs confinement and that the confinement-deconfinement phase transition is of Berezinskii-Kosterlitz-Thouless type. We compute the effective action to one-loop order and argue that when the electron mass mm is much greater than the temperature TT and dimensional coupling e2e^2, the effective field theory is the Sine-Gordon model. In this limit, we estimate the critical temperature, Tcrit.=e2/8π(1e2/12πm+)T_{\rm crit.}=e^2/8\pi(1-e^2/12\pi m+\ldots).Comment: 11 pages, latex, no figure

    Ballistic electron motion in a random magnetic field

    Full text link
    Using a new scheme of the derivation of the non-linear σ\sigma-model we consider the electron motion in a random magnetic field (RMF) in two dimensions. The derivation is based on writing quasiclassical equations and representing their solutions in terms of a functional integral over supermatrices QQ with the constraint Q2=1Q^2=1. Contrary to the standard scheme, neither singling out slow modes nor saddle-point approximation are used. The σ\sigma-model obtained is applicable at the length scale down to the electron wavelength. We show that this model differs from the model with a random potential (RP).However, after averaging over fluctuations in the Lyapunov region the standard σ\sigma-model is obtained leading to the conventional localization behavior.Comment: 10 pages, no figures, to be submitted in PRB v2: Section IV is remove

    Upper critical field in dirty two-band superconductors: breakdown of the anisotropic Ginzburg-Landau theory

    Full text link
    We investigate the upper critical field in a dirty two-band superconductor within quasiclassical Usadel equations. The regime of very high anisotropy in the quasi-2D band, relevant for MgB2_{2}, is considered. We show that strong disparities in pairing interactions and diffusion constant anisotropies for two bands influence the in-plane Hc2H_{c2} in a different way at high and low temperatures. This causes temperature-dependent Hc2H_{c2} anisotropy, in accordance with recent experimental data in MgB2_{2}. The three-dimensional band most strongly influences the in-plane Hc2H_{c2} near TcT_{c}, in the Ginzburg-Landau (GL) region. However, due to a very large difference between the c-axis coherence lengths in the two bands, the GL theory is applicable only in an extremely narrow temperature range near TcT_c. The angular dependence of Hc2H_{c2} deviates from a simple effective-mass law even near TcT_c.Comment: 12 pages, 5 figures, submitted to Phys.Rev.

    Counting Domain Walls in N=1 Super Yang-Mills Theory

    Full text link
    We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined via the Witten index of the induced worldvolume theory, which is invariant under the deformation to the Higgs phase. The worldvolume theory is a sigma model with a Grassmanian target space which arises as the coset associated with the global symmetries broken by the wall solution. Imposing a suitable infrared regulator, the result is found to agree with recent work of Acharya and Vafa in which the walls were realized as wrapped D4-branes in IIA string theory.Comment: 28 pages, RevTeX, 3 figures; v2: discussion of the index slightly expanded, using an alternative regulator, and references added; v3: typos corrected, to appear in Phys. Rev.
    corecore