941 research outputs found

    Tet-On Systems For Doxycycline-inducible Gene Expression.

    Get PDF
    The tetracycline-controlled Tet-Off and Tet-On gene expression systems are used to regulate the activity of genes in eukaryotic cells in diverse settings, varying from basic biological research to biotechnology and gene therapy applications. These systems are based on regulatory elements that control the activity of the tetracycline-resistance operon in bacteria. The Tet-Off system allows silencing of gene expression by administration of tetracycline (Tc) or tetracycline-derivatives like doxycycline (dox), whereas the Tet-On system allows activation of gene expression by dox. Since the initial design and construction of the original Tet-system, these bacterium-derived systems have been significantly improved for their function in eukaryotic cells. We here review how a dox-controlled HIV-1 variant was designed and used to greatly improve the activity and dox-sensitivity of the rtTA transcriptional activator component of the Tet-On system. These optimized rtTA variants require less dox for activation, which will reduce side effects and allow gene control in tissues where a relatively low dox level can be reached, such as the brain

    Condensation of the roots of real random polynomials on the real axis

    Full text link
    We introduce a family of real random polynomials of degree n whose coefficients a_k are symmetric independent Gaussian variables with variance = e^{-k^\alpha}, indexed by a real \alpha \geq 0. We compute exactly the mean number of real roots for large n. As \alpha is varied, one finds three different phases. First, for 0 \leq \alpha \sim (\frac{2}{\pi}) \log{n}. For 1 < \alpha < 2, there is an intermediate phase where grows algebraically with a continuously varying exponent, \sim \frac{2}{\pi} \sqrt{\frac{\alpha-1}{\alpha}} n^{\alpha/2}. And finally for \alpha > 2, one finds a third phase where \sim n. This family of real random polynomials thus exhibits a condensation of their roots on the real line in the sense that, for large n, a finite fraction of their roots /n are real. This condensation occurs via a localization of the real roots around the values \pm \exp{[\frac{\alpha}{2}(k+{1/2})^{\alpha-1} ]}, 1 \ll k \leq n.Comment: 13 pages, 2 figure

    Two Graviton Production at e+ee^+e^- and Hadron Hadron Colliders in the Randall-Sundrum Model

    Full text link
    We compute the pair production cross section of two Kaluza Klein modes in the Randall-Sundrum model at e+ee^+e^- and hadron hadron colliders. These processes are interesting because they get dominant contribution from the graviton interaction at next to leading order. Hence they provide a nontrivial test of the low scale gravity models. All the Feynman rules at next to leading order are also presented. These rules may be useful for many phenomenological applications including the computation of higher order loop corrections.Comment: 24 pages, 11 figures, some typos correcte

    Linking Backlund and Monodromy Charges for Strings on AdS_5 x S^5

    Full text link
    We find an explicit relation between the two known ways of generating an infinite set of local conserved charges for the string sigma model on AdS_5 x S^5: the Backlund and monodromy approaches. We start by constructing the two-parameter family of Backlund transformations for the string with an arbitrary world-sheet metric. We then show that only for a special value of one of the parameters the solutions generated by this transformation are compatible with the Virasoro constraints. By solving the Backlund equations in a non-perturbative fashion, we finally show that the generating functional of the Backlund conservation laws is equal to a certain sum of the quasi-momenta. The positions of the quasi-momenta in the complex spectral plane are uniquely determined by the real parameter of the Backlund transform.Comment: 25 pages, 1 figur

    Single Photon Signals for Warped Quantum Gravity at a Linear e+-e- Collider

    Full text link
    We study the `single photon' process e+- e- -> gamma nu nubar with contributions due to exchange of massive gravitons in the Randall- Sundrum model of low-scale quantum gravity. It is shown that for significant regions in the parameter space, this process unambiguously highlights the resonance structure of the graviton sector. Even in the non-resonant part of the parameter space, we show that comparison with the benchmark process e+- e- -> mu+- mu- can clearly distinguish signals for warped gravity from similar signals for large extra dimensions.Comment: Published version; figures change
    corecore