94 research outputs found

    Computational multiscale modeling of steels assisted by transformation-induced plasticity

    Get PDF
    The contribution of the martensitic transformation to the overall stress-strain response of a multiphase steel assisted by a transformation- induced plasticity effect is analyzed in detail. A recently-developed multiscale transformation model is combined with a plasticity model to simulate the response of a three-dimensional grain of retained austenite embedded in a ferrite-based matrix. Results show that the effective hardening behavior of the material depends strongly on the grain orientation and, to a lesser extent, on the grain size

    A classification of higher-order strain gradient models - linear analysis

    Get PDF
    The use of higher-order strain-gradient models in mechanics is studied. First, existing second-gradient models from the literature are investigated analytically. In general, two classes of second-order strain-gradient models can be distinguished: one class of models has a direct link with the underlying microstructure, but reveals instability for deformation patterns of a relatively short wave length, while the other class of models does not have a direct link with the microstructure, but stability is unconditionally guaranteed. To combine the advantageous properties of the two classes of second-gradient models, a new, fourth-order strain-gradient model, which is unconditionally stable, is derived from a discrete microstructure. The fourth-gradient model and the second-gradient models are compared under static and dynamic loading conditions. A numerical approach is followed, whereby the element-free Galerkin method is used. For the second-gradient model that has been derived from the microstructure, it is found that the model becomes unstable for a limited number of wave lengths, while in dynamics, instabilities are encountered for all shorter wave lengths. Contrarily, the second-gradient model without a direct link to the microstructure behaves in a stable manner, although physically unrealistic results are obtained in dynamics. The fourth-gradient model, with a microstructural basis, gives stable and realistic results in statics as well as in dynamics

    The Development of a Methodology to Understand Climate-induced Damage in Decorated Oak Wood Panels

    Get PDF
    Climate-induced damage in decorated oak wood panels is considered to be a high risk for pre-eminent museum collections. To advise museums on the development of sustainable future preservation strategies and rational guidelines for indoor climate specifications, the risk of this type of damage – physical and mechanical is analysed in full depth in this research. A comprehensive methodology is required that meets the requests of the conservation community and also helps to bridge the gap between scientists and conservators. Therefore, this research couples an extensive examination of empirical data obtained from naturally aged museum objects, i.e. a collection analysis, with numerical modelling and experimental testing. A multidisciplinary collaboration has been initiated, whereby conservators and scientists are working together to fulfil the common objectives of sustainable and low-risk preservation of valuable museum collections. In this paper, the methodology is outlined and some results are presented

    Mechanical performance of wall structures in 3D printing processes: theory, design tools and experiments

    No full text
    In the current contribution for the first time a mechanistic model is presented that can be used for analysing and optimising the mechanical performance of straight wall structures in 3D printing processes. The two failure mechanisms considered are elastic buckling and plastic collapse. The model incorporates the most relevant process parameters, which are the printing velocity, the curing characteristics of the printing material, the geometrical features of the printed object, the heterogeneous strength and stiffness properties, the presence of imperfections, and the non-uniform dead weight loading. The sensitivity to elastic buckling and plastic collapse is first explored for three basic configurations, namely i) a free wall, ii) a simply-supported wall and iii) a fully-clamped wall, which are printed under linear or exponentially-decaying curing processes. As demonstrated for the specific case of a rectangular wall lay-out, the design graphs and failure mechanism maps constructed for these basic configurations provide a convenient practical tool for analysing arbitrary wall structures under a broad range of possible printing process parameters. Here, the simply-supported wall results in a lower bound for the wall buckling length, corresponding to global buckling of the complete wall structure, while the fully-clamped wall gives an upper bound, reflecting local buckling of an individual wall. The range of critical buckling lengths defined by these bounds may be further narrowed by the critical wall length for plastic collapse. For an arbitrary wall configuration the critical buckling length and corresponding buckling mode can be accurately predicted by deriving an expression for the non-uniform rotational stiffness provided by the support structure of a buckling wall. This has been elaborated for the specific case of a wall structure characterised by a rectangular lay-out. It is further shown that under the presence of imperfections the buckling response at growing deflection correctly asymptotes towards the bifurcation buckling length of an ideally straight wall. The buckling responses computed for a free wall and a wall structure with a rectangular lay-out turn out to be in good agreement with experimental results of 3D printed concrete wall structures. Hence, the model can be applied to systematically explore the influence of individual printing process parameters on the mechanical performance of particular wall structures, which should lead to clear directions for the optimisation on printing time and material usage. The model may be further utilised as a validation tool for finite element models of wall structures printed under specific process conditions

    Crystalline damage growth during martensitic phase transformations

    No full text
    A thermomechanical model is developed within a large deformation setting in order to simulate the interactions between martensitic phase transformations and crystalline damage growth at the austenitic grain level. Subgrain information is included in the model via the crystallographic theory of martensitic transformations. The damage and transformation characteristics are dependent of the specific martensitic transformation systems activated during a loading process, which makes the model strongly anisotropic. The state of transformation for the individual transformation systems is represented by the corresponding volume fractions. The state of damage in the austenite and in the martensitic transformation systems is reflected by the corresponding damaged volume fractions. The thermodynamical forces energetically conjugated to the rate of volume fraction and the rate of damaged volume fraction are the driving forces for transformation and crystalline damage, respectively. The expressions for these driving forces follow after constructing the specific form of the Helmholtz energy for a phase-changing, damaging material. The model is used to analyze several three-dimensional boundary value problems that are representative of microstructures appearing in multiphase carbon steels containing retained austenite. The analyses show that the incorporation of damage in the model effectively limits the elastic stresses developing in the martensitic product phase, where the maximum value of the stress strongly depends on the toughness of the martensite. Furthermore, in an aggregate of randomly oriented grains of retained austenite embedded in a ferritic matrix the generation of crystalline damage delays the phase transformation process, and may arrest it if the martensitic product phase is sufficiently brittle. The response characteristics computed with the phase-changing damage model are confirmed by experimental results
    • …
    corecore