249 research outputs found

    How to find the holonomy algebra of a Lorentzian manifold

    Full text link
    Manifolds with exceptional holonomy play an important role in string theory, supergravity and M-theory. It is explained how one can find the holonomy algebra of an arbitrary Riemannian or Lorentzian manifold. Using the de~Rham and Wu decompositions, this problem is reduced to the case of locally indecomposable manifolds. In the case of locally indecomposable Riemannian manifolds, it is known that the holonomy algebra can be found from the analysis of special geometric structures on the manifold. If the holonomy algebra gso(1,n1)\mathfrak{g}\subset\mathfrak{so}(1,n-1) of a locally indecomposable Lorentzian manifold (M,g)(M,g) of dimension nn is different from so(1,n1)\mathfrak{so}(1,n-1), then it is contained in the similitude algebra sim(n2)\mathfrak{sim}(n-2). There are 4 types of such holonomy algebras. Criterion how to find the type of g\mathfrak{g} are given, and special geometric structures corresponding to each type are described. To each g\mathfrak{g} there is a canonically associated subalgebra hso(n2)\mathfrak{h}\subset\mathfrak{so}(n-2). An algorithm how to find h\mathfrak{h} is provided.Comment: 15 pages; the final versio

    Particle motion and gravitational lensing in the metric of a dilaton black hole in a de Sitter universe

    Get PDF
    We consider the metric exterior to a charged dilaton black hole in a de Sitter universe. We study the motion of a test particle in this metric. Conserved quantities are identified and the Hamilton-Jacobi method is employed for the solutions of the equations of motion. At large distances from the black hole the Hubble expansion of the universe modifies the effective potential such that bound orbits could exist up to an upper limit of the angular momentum per mass for the orbiting test particle. We then study the phenomenon of strong field gravitational lensing by these black holes by extending the standard formalism of strong lensing to the non-asymptotically flat dilaton-de Sitter metric. Expressions for the various lensing quantities are obtained in terms of the metric coefficients.Comment: 8 pages, RevTex, 1 eps figures; discussion improved; typos corrected; references adde

    Spontaneous Creation of the Brane World and Direction of the Time Arrow

    Get PDF
    In this note we consider the spontaneous creation of the brane world in five-dimensional space with nondynamical external four-form field via spherically asymmetric bounce solution. We argue that spherically asymmetric bounce suggests several inequivalent directions of the time arrow upon the analytic continuation to the space-time with Lorentzian signature. It it shown that S-branes in the imaginary time emerge naturally upon the particular continuation.Comment: 12 pages, 3 figure

    N=4 supersymmetric Eguchi-Hanson sigma model in d=1

    Full text link
    We show that it is possible to construct a supersymmetric mechanics with four supercharges possessing not conformally flat target space. A general idea of constructing such models is presented. A particular case with Eguchi--Hanson target space is investigated in details: we present the standard and quotient approaches to get the Eguchi--Hanson model, demonstrate their equivalence, give a full set of nonlinear constraints, study their properties and give an explicit expression for the target space metric.Comment: LaTeX, 9 page

    New supersymmetric solutions of N=2, D=5 gauged supergravity with hyperscalars

    Get PDF
    We construct new supersymmetric solutions, including AdS bubbles, in an N=2 truncation of five-dimensional N=8 gauged supergravity. This particular truncation is given by N=2 gauged supergravity coupled to two vector multiples and three incomplete hypermultiplets, and was originally investigated in the context of obtaining regular AdS bubble geometries with multiple active R-charges. We focus on cohomogeneity-one solutions corresponding to objects with two equal angular momenta and up to three independent R-charges. Curiously, we find a new set of zero and negative mass solitons asymptotic to AdS_5/Z_k, for k \ge 3, which are everywhere regular without closed timelike curves.Comment: Latex 3 times, 42 page

    Monopoles and clusters

    Get PDF
    We define and study certain hyperkaehler manifolds which capture the asymptotic behaviour of the SU(2)-monopole metric in regions where monopoles break down into monopoles of lower charges. The rate at which these new metrics approximate the monopole metric is exponential, as for the Gibbons-Manton metric.Comment: v2.: relation to calorons mentioned; added explanation

    Particle production and classical condensates in de Sitter space

    Get PDF
    The cosmological particle production in a k=0k=0 expanding de Sitter universe with a Hubble parameter H0H_0 is considered for various values of mass or conformal coupling of a free, scalar field. One finds that, for a minimally coupled field with mass 0m2<9H02/40 \leq m^2 < 9 H_0^2/4 (except for m2=2H02m^2= 2H_0^2), the one-mode occupation number grows to unity soon after the physical wavelength of the mode becomes larger than the Hubble radius, and afterwards diverges as n(t)O(1)(λphys(t)/H01)2νn(t) \sim O(1)(\lambda_{phys}(t)/H_0^{-1})^{2\nu}, where ν[9/4m2/H02]1/2\nu \equiv [9/4 - m^2/H_0^2]^{1/2}. However, for a field with m2>9H02/4m^2 > 9H_0^2/4, the occupation number of a mode outside the Hubble radius is rapidly oscillating and bounded and does not exceed unity. These results, readily generalized for cases of a nonminimal coupling, provide a clear argument that the long-wavelength vacuum fluctuations of low-mass fields in an inflationary universe do show classical behavior, while those of heavy fields do not. The interaction or self-interaction does not appear necessary for the emergence of classical features, which are entirely due to the rapid expansion of the de Sitter background and the upside-down nature of quantum oscillators for modes outside the Hubble radius.Comment: Revtex + 5 postscript figures. Accepted for Phys Rev D15. Revision of Aug 1996 preprint limited to the inclusion and discussion of references suggested by the referee

    Non-perturbative orientifold transitions at the conifold

    Full text link
    After orientifold projection, the conifold singularity in hypermultiplet moduli space of Calabi-Yau compactifications cannot be avoided by geometric deformations. We study the non-perturbative fate of this singularity in a local model involving O6-planes and D6-branes wrapping the deformed conifold in Type IIA string theory. We classify possible A-type orientifolds of the deformed conifold and find that they cannot all be continued to the small resolution. When passing through the singularity on the deformed side, the O-plane charge generally jumps by the class of the vanishing cycle. To decide which classical configurations are dynamically connected, we construct the quantum moduli space by lifting the orientifold to M-theory as well as by looking at the superpotential. We find a rich pattern of smooth and phase transitions depending on the total sixbrane charge. Non-BPS states from branes wrapped on non-supersymmetric bolts are responsible for a phase transition. We also clarify the nature of a Z_2 valued D0-brane charge in the 6-brane background. Along the way, we obtain a new metric of G_2 holonomy corresponding to an O6-plane on the three sphere of the deformed conifold.Comment: 76 pages, references adde

    Families of N=2 Strings

    Get PDF
    In a given 4d spacetime bakcground, one can often construct not one but a family of distinct N=2 string theories. This is due to the multiple ways N=2 superconformal algebra can be embedded in a given worldsheet theory. We formulate the principle of obtaining different physical theories by gauging different embeddings of the same symmetry algebra in the same ``pre-theory.'' We then apply it to N=2 strings and formulate the recipe for finding the associated parameter spaces of gauging. Flat and curved target spaces of both (4,0) and (2,2) signatures are considered. We broadly divide the gauging choices into two classes, denoted by alpha and beta, and show them to be related by T-duality. The distinction between them is formulated topologically and hinges on some unique properties of 4d manifolds. We determine what their parameter spaces of gauging are under certain simplicity ansatz for generic flat spaces (R^4 and its toroidal compactifications) as well as some curved spaces. We briefly discuss the spectra of D-branes for both alpha and beta families.Comment: 66+1 pages, 2 tables, latex 2e, hyperref. ver2: typos corrected, reference adde

    Interaction of Hawking radiation with static sources in deSitter and Schwarzschild-deSitter spacetimes

    Full text link
    We study and look for similarities between the response rates RdS(a0,Λ)R^{\rm dS}(a_0, \Lambda) and RSdS(a0,Λ,M)R^{\rm SdS}(a_0, \Lambda, M) of a static scalar source with constant proper acceleration a0a_0 interacting with a massless, conformally coupled Klein-Gordon field in (i) deSitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the deSitter cosmological horizon, and in (ii) Schwarzschild-deSitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Λ\Lambda is the cosmological constant and MM is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of deSitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-deSitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that RdS(a0,Λ)R^{\rm dS}(a_0, \Lambda) and RSdS(a0,Λ,M)R^{\rm SdS}(a_0, \Lambda, M) do not coincide in general, but tend to each other when Λ0\Lambda \to 0 or a0a_0 \to \infty. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.Comment: ReVTeX4 file, 9 pages, 5 figure
    corecore