538 research outputs found

    Non-rigid Shell Model and Correlational Mechanism of the Local Pairing

    Full text link
    The Hartree-Fock states of the many-electron atomic system can be unstable with respect to a static or dynamic shift of the electron shells. An appropriate non-rigid shell model for atomic clusters is developed. It permits to formulate a convenient approach to the semiempirical description of the different correlation effects and to reveal some new effects.Comment: 3 pages, 2 ".gif" figures, LaTeX; will be published in Physica C in Materials of Int.Conf. HTSC-V. (1997, Beijing, China

    Effective R-parity violation from supersymmetry breaking

    Full text link
    We present a scenario in which Yukawa-like R-parity violating (RPV) couplings are naturally suppressed. In our framework, RPV is assumed to originate from the SUSY breaking mechanism and then transmitted into the SUSY Lagrangian only through soft SUSY breaking operators in the scalar potential. The RPV Yukawa-like operators of the superpotential, conventionally parametrized by the couplings \lambda, \lambda' and \lambda'', are then generated through loops containing the SUSY scalars, the gauginos and the soft RPV interactions and are, therefore, manifest as effective operators with a typical strength of order 10^{-3}.Comment: 4 pages, 2 figures, Revtex4. Main changes with respect to Version 1 are: improved discussions on RGE effects, discussion added on neutrino masses, a toy model added for the proposed scenario. Conclusions remain unchanged. As will appear in Phys. Rev.

    Supersymmetry and localization

    Get PDF
    We study conditions under which an odd symmetry of the integrand leads to localization of the corresponding integral over a (super)manifold. We also show that in many cases these conditions guarantee exactness of the stationary phase approximation of such integrals.Comment: 16 pages, LATE

    Optical sum rule violation, superfluid weight and condensation energy in the cuprates

    Full text link
    The model of hole superconductivity predicts that the superfluid weight in the zero-frequency δ\delta-function in the optical conductivity has an anomalous contribution from high frequencies, due to lowering of the system's kinetic energy upon entering the superconducting state. The lowering of kinetic energy, mainly in-plane in origin, accounts for both the condensation energy of the superconductor as well as an increased potential energy due to larger Coulomb repulsion in the paired state. It leads to an apparent violation of the conductivity sum rule, which in the clean limit we predict to be substantially larger for in-plane than for c-axis conductivity. However, because cuprates are in the dirty limit for c-axis transport, the sum rule violation is found to be greatly enhanced in the c-direction. The model predicts the sum rule violation to be largest in the underdoped regime and to decrease with doping, more rapidly in the c-direction that in the plane. So far, experiments have detected sum rule violation in c-axis transport in several cuprates, as well as a decrease and disappearance of this violation for increasing doping, but no violation in-plane. We explore the predictions of the model for a wide range of parameters, both in the absence and in the presence of disorder, and the relation with current experimental knowledge.Comment: submitted to Phys.Rev.

    Temperatures of Fragment Kinetic Energy Spectra

    Full text link
    Multifragmentation reactions without large compression in the initial state (proton-induced reactions, reverse-kinematics, projectile fragmentation) are examined, and it is verified quantitatively that the high temperatures obtained from fragment kinetic energy spectra and lower temperatures obtained from observables such as level population or isotope ratios can be understood in a common framework.Comment: LaTeX, 7 pages, 2 figures available from autho

    Neutrino Oscillations and Collider Test of the R-parity Violating Minimal Supergravity Model

    Full text link
    We study the R-parity violating minimal supergravity models accounting for the observed neutrino masses and mixing, which can be tested in future collider experiments. The bi-large mixing can be explained by allowing five dominant tri-linear couplings λ1,2,3 \lambda'_{1,2,3} and λ1,2\lambda_{1,2}. The desired ratio of the atmospheric and solar neutrino mass-squared differences can be obtained in a very limited parameter space where the tree-level contribution is tuned to be suppressed. In this allowed region, we quantify the correlation between the three neutrino mixing angles and the tri-linear R-parity violating couplings. Qualitatively, the relations λ1<λ2λ3| \lambda'_1 | < | \lambda'_2| \sim | \lambda'_3|, and λ1λ2|\lambda_1| \sim |\lambda_2| are required by the large atmospheric neutrino mixing angle θ23\theta_{23} and the small angle θ13\theta_{13}, and the large solar neutrino mixing angle θ12\theta_{12}, respectively. Such a prediction on the couplings can be tested in the next linear colliders by observing the branching ratios of the lightest supersymmetric particle (LSP). For the stau or the neutralino LSP, the ratio λ12:λ22:λ12+λ22|\lambda_1|^2: |\lambda_2|^2: |\lambda_1|^2 + |\lambda_2|^2 can be measured by establishing Br(eν):Br(μν):Br(τν)Br(e\nu): Br(\mu\nu) : Br(\tau\nu) or Br(νe±τ):Br(νμ±τ):Br(ντ±τ)Br(\nu e^\pm \tau^\mp ): Br(\nu\mu^\pm\tau^\mp) : Br(\nu\tau^\pm\tau^\mp), respectively. The information on the couplings λi\lambda'_i can be drawn by measuring Br(litbˉ)λi2Br(l_i t \bar{b}) \propto |\lambda'_i|^2 if the neutralino LSP is heavier than the top quark.Comment: RevTex, 25 pages, 8 eps figure

    Effect of nearest neighbor repulsion on the low frequency phase diagram of a quarter-filled Hubbard-Holstein chain

    Full text link
    We have studied the influence of nearest-neighbor (NN) repulsion on the low frequency phase diagram of a quarter-filled Hubbard-Holstein chain. The NN repulsion term induces the apparition of two new long range ordered phases (one 4kF4k_F CDW for positive Ueff=U2g2/ωU_{eff} = U-2g^2/\omega and one 2kF2k_F CDW for negative UeffU_{eff}) that did not exist in the V=0 phase diagram. These results are put into perspective with the newly observed charge ordered phases in organic conductors and an interpretation of their origin in terms of electron-molecular vibration coupling is suggested.Comment: 10 pages, 10 figure

    Rigorous results on superconducting ground states for attractive extended Hubbard models

    Get PDF
    We show that the exact ground state for a class of extended Hubbard models including bond-charge, exchange, and pair-hopping terms, is the Yang "eta-paired" state for any non-vanishing value of the pair-hopping amplitude, at least when the on-site Coulomb interaction is attractive enough and the remaining physical parameters satisfy a single constraint. The ground state is thus rigorously superconducting. Our result holds on a bipartite lattice in any dimension, at any band filling, and for arbitrary electron hopping.Comment: 12 page

    Optical Sum Rule anomalies in the High-Tc Cuprates

    Full text link
    We provide a brief summary of the observed sum rule anomalies in the high-Tc_c cuprate materials. A recent issue has been the impact of a non-infinite frequency cutoff in the experiment. In the normal state, the observed anomalously high temperature dependence can be explained as a `cutoff effect'. The anomalous rise in the optical spectral weight below the superconducting transition, however, remains as a solid experimental observation, even with the use of a cutoff frequency.Comment: 4 pages, 2 figures, very brief review of optical sum rule anomal

    Small Fermi energy and phonon anharmonicity in MgB_2 and related compounds

    Full text link
    The remarkable anharmonicity of the E_{2g} phonon in MgB_2 has been suggested in literature to play a primary role in its superconducting pairing. We investigate, by means of LDA calculations, the microscopic origin of such an anharmonicity in MgB_2, AlB_2, and in hole-doped graphite. We find that the anharmonic character of the E_{2g} phonon is essentially driven by the small Fermi energy of the sigma holes. We present a simple analytic model which allows us to understand in microscopic terms the role of the small Fermi energy and of the electronic structure. The relation between anharmonicity and nonadiabaticity is pointed out and discussed in relation to various materials.Comment: 5 pages, 2 figures replaced with final version, accepted on Physical Review
    corecore