1,170 research outputs found
The PL calibration for Milky Way Cepheids and its implications for the distance scale
The rationale behind recent calibrations of the Cepheid PL relation using the
Wesenheit formulation is reviewed and reanalyzed, and it is shown that recent
conclusions regarding a possible change in slope of the PL relation for
short-period and long-period Cepheids are tied to a pathological distribution
of HST calibrators within the instability strip. A recalibration of the
period-luminosity relation is obtained using Galactic Cepheids in open clusters
and groups, the resulting relationship, described by log L/L_sun =
2.415(+-0.035) + 1.148(+-0.044)log P, exhibiting only the moderate scatter
expected from color spread within the instability strip. The relationship is
confirmed by Cepheids with HST parallaxes, although without the need for
Lutz-Kelker corrections, and in general by Cepheids with revised Hipparcos
parallaxes, albeit with concerns about the cited precisions of the latter. A
Wesenheit formulation of Wv = -2.259(+-0.083) - 4.185(+-0.103)log P for
Galactic Cepheids is tested successfully using Cepheids in the inner regions of
the galaxy NGC 4258, confirming the independent geometrical distance
established for the galaxy from OH masers. Differences between the extinction
properties of interstellar and extragalactic dust may yet play an important
role in the further calibration of the Cepheid PL relation and its application
to the extragalactic distance scale.Comment: Accepted for Publication (Astrophysics & Space Science
Endothelin-Converting Enzyme-1 (ECE-1) Is Post-Transcriptionally Regulated by Alternative Polyadenylation
Endothelin-converting enzyme-1 (ECE-1) is the enzyme predominantly responsible for producing active endothelin-1 (ET-1), a mitogenic peptide implicated in the aetiology of a number of diseases, including cancer. Elevated levels of ECE-1 have been observed in a range of malignancies, with high expression conferring poor prognosis and aiding the acquisition of androgen independence in prostate cancer. The mechanisms regulating the expression of ECE-1 in cancer cells are poorly understood, hampering the development of novel therapies targeting the endothelin axis. Here we provide evidence that the expression of ECE-1 is markedly inhibited by its 3′UTR, and that alternative polyadenylation (APA) results in the production of ECE-1 transcripts with truncated 3′UTRs which promote elevated protein expression. Abolition of the ECE-1 APA sites reduced protein expression from a reporter vector in prostate cancer cells, suggesting these sites are functional. This is the first study to identify ECE-1 as a target for APA, a regulatory mechanism aberrantly activated in cancer cells, and provides novel information about the mechanisms leading to ECE-1 overexpression in malignant cells
The Tensor to Scalar Ratio of Phantom Dark Energy Models
We investigate the anisotropies in the cosmic microwave background in a class
of models which possess a positive cosmic energy density but negative pressure,
with a constant equation of state w = p/rho < -1. We calculate the temperature
and polarization anisotropy spectra for both scalar and tensor perturbations by
modifying the publicly available code CMBfast. For a constant initial curvature
perturbation or tensor normalization, we have calculated the final anisotropy
spectra as a function of the dark energy density and equation of state w and of
the scalar and tensor spectral indices. This allows us to calculate the
dependence of the tensor-to-scalar ratio on w in a model with phantom dark
energy, which may be important for interpreting any future detection of
long-wavelength gravitational waves.Comment: 5 pages, 4 figure
On the degree of scale invariance of inflationary perturbations
Many, if not most, inflationary models predict the power-law index of the
spectrum of density perturbations is close to one, though not precisely equal
to one, |n-1| \sim O(0.1), implying that the spectrum of density perturbations
is nearly, but not exactly, scale invariant. Some models allow n to be
significantly less than one (n \sim 0.7); a spectral index significantly
greater than one is more difficult to achieve. We show that n \approx 1 is a
consequence of the slow-roll conditions for inflation and ``naturalness,'' and
thus is a generic prediction of inflation. We discuss what is required to
deviate significantly from scale invariance, and then show, by explicit
construction, the existence of smooth potentials that satisfy all the
conditions for successful inflation and give as large as 2.Comment: 7 pages, 2 figures, submitted to Phys. Rev.
Limits on the gravity wave contribution to microwave anisotropies
We present limits on the fraction of large angle microwave anisotropies which
could come from tensor perturbations. We use the COBE results as well as
smaller scale CMB observations, measurements of galaxy correlations, abundances
of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to
provide conservative limits on the tensor-to-scalar ratio for standard
inflationary models. For power-law inflation, for example, we find T/S<0.52 at
95% confidence, with a similar constraint for phi^p potentials. However, for
models with tensor amplitude unrelated to the scalar spectral index it is still
currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D.
Calculations extended to blue spectral index, Fig. 6 added, discussion of
results expande
All clinically relevant components, from prion infected blood donors, can cause disease following a single transfusion
The Detectability of Departures from the Inflationary Consistency Equation
We study the detectability, given CMB polarization maps, of departures from
the inflationary consistency equation, r \equiv T/S \simeq -5 n_T, where T and
S are the tensor and scalar contributions to the quadrupole variance,
respectively. The consistency equation holds if inflation is driven by a
slowly-rolling scalar field. Departures can be caused by: 1) higher-order terms
in the expansion in slow-roll parameters, 2) quantum loop corrections or 3)
multiple fields. Higher-order corrections in the first two slow-roll parameters
are undetectably small. Loop corrections are detectable if they are nearly
maximal and r \ga 0.1. Large departures (|\Delta n_T| \ga 0.1) can be seen if r
\ga 0.001. High angular resolution can be important for detecting non-zero
r+5n_T, even when not important for detecting non-zero r.Comment: 7 pages, 4 figures, submitted to PR
Theta angle versus CP violation in the leptonic sector
Assuming that the axion mechanism of solving the strong CP problem does not
exist and the vanishing of theta at tree level is achieved by some
model-building means, we study the naturalness of having large CP-violating
sources in the leptonic sector. We consider the radiative mechanisms which
transfer a possibly large CP-violating phase in the leptonic sector to the
theta parameter. It is found that large theta cannot be induced in the models
with one Higgs doublet as at least three loops are required in this case. In
the models with two or more Higgs doublets the dominant source of theta is the
phases in the scalar potential, induced by CP violation in leptonic sector.
Thus, in the MSSM framework the imaginary part of the trilinear soft-breaking
parameter A_l generates the corrections to the theta angle already at one loop.
These corrections are large, excluding the possibility of large phases, unless
the universality in the slepton sector is strongly violated.Comment: 5 pages, 2 figure
Observational Constraints on Chaplygin Quartessence: Background Results
We derive the constraints set by several experiments on the quartessence
Chaplygin model (QCM). In this scenario, a single fluid component drives the
Universe from a nonrelativistic matter-dominated phase to an accelerated
expansion phase behaving, first, like dark matter and in a more recent epoch
like dark energy. We consider current data from SNIa experiments, statistics of
gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in
galaxy clusters. We investigate the constraints from this data set on flat
Chaplygin quartessence cosmologies. The observables considered here are
dependent essentially on the background geometry, and not on the specific form
of the QCM fluctuations. We obtain the confidence region on the two parameters
of the model from a combined analysis of all the above tests. We find that the
best-fit occurs close to the CDM limit (). The standard
Chaplygin quartessence () is also allowed by the data, but only at
the level.Comment: Replaced to match the published version, references update
Duality Invariance of Cosmological Perturbation Spectra
I show that cosmological perturbation spectra produced from quantum
fluctuations in massless or self-interacting scalar fields during an
inflationary era remain invariant under a two parameter family of
transformations of the homogeneous background fields. This relates slow-roll
inflation models to solutions which may be far from the usual slow-roll limit.
For example, a scale-invariant spectrum of perturbations in a minimally
coupled, massless field can be produced by an exponential expansion with
, or by a collapsing universe with .Comment: 5 pages, Latex with Revtex. Hamiltonian formulation added and
discussion expanded. Version to appear in Phys Rev
- …
