169 research outputs found

    The Tensor to Scalar Ratio of Phantom Dark Energy Models

    Get PDF
    We investigate the anisotropies in the cosmic microwave background in a class of models which possess a positive cosmic energy density but negative pressure, with a constant equation of state w = p/rho < -1. We calculate the temperature and polarization anisotropy spectra for both scalar and tensor perturbations by modifying the publicly available code CMBfast. For a constant initial curvature perturbation or tensor normalization, we have calculated the final anisotropy spectra as a function of the dark energy density and equation of state w and of the scalar and tensor spectral indices. This allows us to calculate the dependence of the tensor-to-scalar ratio on w in a model with phantom dark energy, which may be important for interpreting any future detection of long-wavelength gravitational waves.Comment: 5 pages, 4 figure

    Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition

    Get PDF
    A processing route has been developed to grow bundles of carbon nanotubes on substrates from methane and hydrogen mixtures by microwave plasma-enhanced chemical vapor deposition, catalyzed by iron particles reduced from ferric nitrate. Growth takes place at about 900°C leading to nanotubes with lengths of more than 20 μm and diameters on the nanometer scale

    Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas

    Get PDF
    The transition from microcrystalline to nanocrystalline diamond films grown from Ar/H2/CH4 microwave plasmas has been investigated. Both the cross-section and plan-view micrographs of scanning electron microscopy reveal that the surface morphology, the grain size, and the growth mechanism of the diamond films depend strongly on the ratio of Ar to H2 in the reactant gases. Microcrystalline grain size and columnar growth have been observed from films produced from Ar/H2/CH4 microwave discharges with low concentrations of Ar in the reactant gases. By contrast, the films grown from Ar/H2/CH4 microwave plasmas with a high concentration of Ar in the reactant gases consist of phase pure nanocrystalline diamond, which has been characterized by transmission electron microscopy, selected area electron diffraction, and electron energy loss spectroscopy. X-ray diffraction and Raman spectroscopy reveal that the width of the diffraction peaks and the Raman bands of the as-grown films depends on the ratio of Ar to H2 in the plasmas and are attributed to the transition from micron to nanometer size crystallites. It has been demonstrated that the microstructure of diamond films deposited from Ar/H2/CH4 plasmas can be controlled by varying the ratio of Ar to H2 in the reactant gas. The transition becomes pronounced at an Ar/H2 volume ratio of 4, and the microcrystalline diamond films are totally transformed to nanocrystalline diamond at an Ar/H2 volume ratio of 9. The transition in microstructure is presumably due to a change in growth mechanism from CH3· in high hydrogen content to C2 as a growth species in low hydrogen content plasmas

    A 5D non compact and non Ricci flat Kaluza-Klein Cosmology

    Full text link
    A model universe is proposed in the framework of 5-dimensional noncompact Kaluza-Klein cosmology which is not Ricci flat. The 4D part as the Robertson-Walker metric is coupled to conventional perfect fluid, and its extra-dimensional part is coupled to a dark pressure through a scalar field. It is shown that neither early inflation nor current acceleration of the 4D universe would happen if the non-vacuum states of the scalar field would contribute to 4D cosmology.Comment: 13 pages, major revision, published online in GR

    Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas

    Get PDF
    Nanocrystalline diamond films have been synthesized by microwave plasma enhanced chemical vapor deposition using N2/CH4 as the reactant gas without additional H2. The nanocrystalline diamond phase has been identified by x-ray diffraction and transmission electron microscopy analyses. High resolution secondary ion mass spectroscopy has been employed to measure incorporated nitrogen concentrations up to 8 ×1020 atoms/cm3. Electron field emission measurements give an onset field as low as 3.2 V/μm. The effect of the incorporated nitrogen on the field emission characteristics of the nanocrystalline films is discussed

    Limits on the gravity wave contribution to microwave anisotropies

    Get PDF
    We present limits on the fraction of large angle microwave anisotropies which could come from tensor perturbations. We use the COBE results as well as smaller scale CMB observations, measurements of galaxy correlations, abundances of galaxy clusters, and Lyman alpha absorption cloud statistics. Our aim is to provide conservative limits on the tensor-to-scalar ratio for standard inflationary models. For power-law inflation, for example, we find T/S<0.52 at 95% confidence, with a similar constraint for phi^p potentials. However, for models with tensor amplitude unrelated to the scalar spectral index it is still currently possible to have T/S>1.Comment: 23 pages, 7 figures, accepted for publication in Phys. Rev. D. Calculations extended to blue spectral index, Fig. 6 added, discussion of results expande

    Cosmology with a long range repulsive force

    Get PDF
    We consider a class of cosmological models in which the universe is filled with a (non-electric) charge density that repels itself by means of a force carried by a vector boson with a tiny mass. When the vector's mass depends upon other fields, the repulsive interaction gives rise to an electromagnetic barrier which prevents these fields from driving the mass to zero. This can modify the cosmology dramatically. We present a very simple realization of this idea in which the vector's mass arises from a scalar field. The electromagnetic barrier prevents this field from rolling down its potential and thereby leads to accelerated expansion.Comment: 15 pages, 8 figures, LaTeX (version accepted for publication in PRD). 3 new figures, extended discussion of observational consequence

    Age constraints and fine tuning in variable-mass particle models

    Full text link
    VAMP (variable-mass particles) scenarios, in which the mass of the cold dark matter particles is a function of the scalar field responsible for the present acceleration of the Universe, have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. We find that only a narrow region in parameter space leads to models with viable values for the Hubble constant and dark energy density today. In the allowed region, the dark energy density starts to dominate around the present epoch and consequently such models cannot solve the coincidence problem. We show that the age of the Universe in this scenario is considerably higher than the age for noncoupled dark energy models, and conclude that more precise independent measurements of the age of the Universe would be useful in distinguishing between coupled and noncoupled dark energy models.Comment: 7 pages, 8 figures, matches the Phys. Rev. D published versio

    Observational Constraints on Chaplygin Quartessence: Background Results

    Full text link
    We derive the constraints set by several experiments on the quartessence Chaplygin model (QCM). In this scenario, a single fluid component drives the Universe from a nonrelativistic matter-dominated phase to an accelerated expansion phase behaving, first, like dark matter and in a more recent epoch like dark energy. We consider current data from SNIa experiments, statistics of gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in galaxy clusters. We investigate the constraints from this data set on flat Chaplygin quartessence cosmologies. The observables considered here are dependent essentially on the background geometry, and not on the specific form of the QCM fluctuations. We obtain the confidence region on the two parameters of the model from a combined analysis of all the above tests. We find that the best-fit occurs close to the Λ\LambdaCDM limit (α=0\alpha=0). The standard Chaplygin quartessence (α=1\alpha=1) is also allowed by the data, but only at the 2σ\sim2\sigma level.Comment: Replaced to match the published version, references update

    The Q2Q^2-dependence of the generalised Gerasimov-Drell-Hearn integral for the deuteron, proton and neutron

    Full text link
    The Gerasimov-Drell-Hearn (GDH) sum rule connects the anomalous contribution to the magnetic moment of the target nucleus with an energy-weighted integral of the difference of the helicity-dependent photoabsorption cross sections. The data collected by HERMES with a deuterium target are presented together with a re-analysis of previous measurements on the proton. This provides a measurement of the generalised GDH integral covering simultaneously the nucleon-resonance and the deep inelastic scattering regions. The contribution of the nucleon-resonance region is seen to decrease rapidly with increasing Q2Q^2. The DIS contribution is sizeable over the full measured range, even down to the lowest measured Q2Q^2. As expected, at higher Q2Q^2 the data are found to be in agreement with previous measurements of the first moment of g1g_1. From data on the deuteron and proton, the GDH integral for the neutron has been derived and the proton--neutron difference evaluated. This difference is found to satisfy the fundamental Bjorken sum rule at Q2=5Q^2 = 5 GeV2^2.Comment: 12 pages, 10 figure
    corecore