26 research outputs found
Luttinger Parameter g for Metallic Carbon Nanotubes and Related Systems
The random phase approximation (RPA) theory is used to derive the Luttinger
parameter g for metallic carbon nanotubes. The results are consistent with the
Tomonaga-Luttinger models. All metallic carbon nanotubes, regardless if they
are armchair tubes, zigzag tubes, or chiral tubes, should have the same
Luttinger parameter g. However, a (10,10) carbon peapod should have a smaller g
value than a (10,10) carbon nanotube. Changing the Fermi level by applying a
gate voltage has only a second order effect on the g value. RPA theory is a
valid approach to calculate plasmon energy in carbon nanotube systems,
regardless if the ground state is a Luttinger liquid or Fermi liquid. (This
paper was published in PRB 66, 193405 (2002). However, Eqs. (6), (9), and (19)
were misprinted there.)Comment: 2 figure
Exact-exchange density-functional theory for quasi-two-dimensional electron gases
A simple exact-exchange density-functional method for a quasi-two-dimensional
electron gas with variable density is presented. An analytical expression for
the exact-exchange potential with only one occupied subband is provided,
without approximations. When more subbands are occupied the exact-exchange
potential is obtained numerically. The theory shows that, in contradiction with
LDA, the exact-exchange potential exhibits discontinuities and the system
suffers a zero-temperature first-order transition each time a subband is
occupied. Results suggesting that the translational symmetry might be
spontaneously broken at zero temperature are presented. An extension of the
theory to finite temperatures allows to describe a drop in the intersubband
spacing in good quantitative agreement with recent experiments.Comment: 14 pages, 3 figure
Coulomb Gaps in One-Dimensional Spin-Polarized Electron Systems
We investigate the density of states (DOS) near the Fermi energy of
one-dimensional spin-polarized electron systems in the quantum regime where the
localization length is comparable to or larger than the inter-particle
distance. The Wigner lattice gap of such a system, in the presence of weak
disorder, can occur precisely at the Fermi energy, coinciding with the Coulomb
gap in position. The interplay between the two is investigated by treating the
long-range Coulomb interaction and the random disorder potential in a
self-consistent Hartree-Fock approximation. The DOS near the Fermi energy is
found to be well described by a power law whose exponent decreases with
increasing disorder strength.Comment: 4 pages, revtex, 4 figures, to be published in Phys. Rev. B as a
Rapid Communicatio
Intrasubband and Intersubband Electron Relaxation in Semiconductor Quantum Wire Structures
We calculate the intersubband and intrasubband many-body inelastic Coulomb
scattering rates due to electron-electron interaction in two-subband
semiconductor quantum wire structures. We analyze our relaxation rates in terms
of contributions from inter- and intrasubband charge-density excitations
separately. We show that the intersubband (intrasubband) charge-density
excitations are primarily responsible for intersubband (intrasubband) inelastic
scattering. We identify the contributions to the inelastic scattering rate
coming from the emission of the single-particle and the collective excitations
individually. We obtain the lifetime of hot electrons injected in each subband
as a function of the total charge density in the wire.Comment: Submitted to PRB. 20 pages, Latex file, and 7 postscript files with
Figure
Tomonaga-Luttinger features in the resonant Raman spectra of quantum wires
The differential cross section for resonant Raman scattering from the
collective modes in a one dimensional system of interacting electrons is
calculated non-perturbatively using the bosonization method. The results
indicate that resonant Raman spectroscopy is a powerful tool for studying
Tomonaga-Luttinger liquid behaviour in quasi-one dimensional electron systems.Comment: 4 pages, no figur
DC and AC Josephson Effect in a Superconductor-Luttinger Liquid-Superconductor System
We calculate both the DC and the AC Josephson current through a
one-dimensional system of interacting electrons, connected to two
superconductors by tunnel junctions. We treat the (repulsive) Coulomb
interaction in the framework of the one-channel, spin- Luttinger model.
The Josephson current is obtained for two geometries of experimental relevance:
a quantum wire and a ring. At zero temperature, the critical current is found
to decay algebraically with increasing distance between the junctions. The
decay is characterized by an exponent which depends on the strength of the
interaction. At finite temperatures , lower than the superconducting
transition temperature , there is a crossover from algebraic to
exponential decay of the critical current as a function of , at a distance
of the order of . Moreover, the dependence of critical current
on temperature shows non-monotonic behavior. If the Luttinger liquid is
confined to a ring of circumference , coupled capacitively to a gate voltage
and threaded by a magnetic flux, the Josephson current shows remarkable parity
effects under the variation of these parameters. For some values of the gate
voltage and applied flux, the ring acts as a -junction. These features are
robust against thermal fluctuations up to temperatures on the order of . For the wire-geometry, we have also studied the AC-Josephson
effect. The amplitude and the phase of the time-dependent Josephson current are
affected by electron-electron interactions. Specifically, the amplitude shows
pronounced oscillations as a function of the bias voltage due to the difference
between the velocities of spin and charge excitations in the Luttinger liquid.
Therefore, the AC Josephson effect can be used as a tool for the observation o
Revival of the spin-Peierls transition in Cu_xZn_(1-x)GeO_3 under pressure
Pressure and temperature dependent susceptibility and Raman scattering
experiments on single crystalline Cu_xZn_(1-x)GeO_3 have shown an unusually
strong increase of the spin-Peierls phase transition temperature upon applying
hydrostatic pressure. The large positive pressure coefficient (7.5 K/GPa) -
almost twice as large as for the pure compound (4.5 K/GPa) - is interpreted as
arising due to an increasing magnetic frustration which decreases the spin-spin
correlation length, and thereby weakens the influence of the non-magnetic
Zn-substitution.Comment: LaTeX, 15 pages, 5 eps figures, Phys. Rev. B, to appea
Tomonaga-Luttinger parameters for quantum wires
The low-energy properties of a homogeneous one-dimensional electron system
are completely specified by two Tomonaga-Luttinger parameters and
. In this paper we discuss microscopic estimates of the values of
these parameters in semiconductor quantum wires that exploit their relationship
to thermodynamic properties. Motivated by the recognized similarity between
correlations in the ground state of a one-dimensional electron liquid and
correlations in a Wigner crystal, we evaluate these thermodynamic quantities in
a self-consistent Hartree-Fock approximation. According to our calculations,
the Hartree-Fock approximation ground state is a Wigner crystal at all electron
densities and has antiferromagnetic order that gradually evolves from
spin-density-wave to localized in character as the density is lowered. Our
results for are in good agreement with weak-coupling perturbative
estimates at high densities, but deviate strongly at low
densities, especially when the electron-electron interaction is screened at
long distances. vanishes at small carrier density
whereas we conjecture that when , implying that
should pass through a minimum at an intermediate density.
Observation of such a non-monotonic dependence on particle density would allow
to measure the range of the microscopic interaction. In the spin sector we find
that the spin velocity decreases with increasing interaction strength or
decreasing . Strong correlation effects make it difficult to obtain fully
consistent estimates of from Hartree-Fock calculations. We
conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit where
is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include
Band structure and optical anisotropy in V-shaped and T-shaped semiconductor quantum wires
We present a theoretical investigation of the electronic and optical properties of V- and T-shaped quantum wires. Valence-band mixing as well as realistic sample geometries are fully included through an accurate and efficient approach that is described here in detail. We investigate the resulting valence-band structure, which shows some significant peculiarities, such as an anomalously large spin splitting in the lowest heavy-hole subband of T-shaped wires. For both classes of wires we obtain good agreement between calculated optical absorption and recent experimental spectra, and we demonstrate that the analysis of optical anisotropy can be used as an effective tool to extract information on valence states, which is usually very difficult to obtain otherwise