20 research outputs found

    (An)Isotropic models in scalar and scalar-tensor cosmologies

    Full text link
    We study how the constants GG and Λ\Lambda may vary in different theoretical models (general relativity with a perfect fluid, scalar cosmological models (\textquotedblleft quintessence\textquotedblright) with and without interacting scalar and matter fields and a scalar-tensor model with a dynamical Λ\Lambda) in order to explain some observational results. We apply the program outlined in section II to study three different geometries which generalize the FRW ones, which are Bianchi \textrm{V}, \textrm{VII}0_{0} and \textrm{IX}, under the self-similarity hypothesis. We put special emphasis on calculating exact power-law solutions which allow us to compare the different models. In all the studied cases we arrive to the conclusion that the solutions are isotropic and noninflationary while the cosmological constant behaves as a positive decreasing time function (in agreement with the current observations) and the gravitational constant behaves as a growing time function

    Bianchi {VI}0_{0} in Scalar and Scalar-Tensor Cosmologies

    Full text link
    We study several cosmological models with Bianchi \textrm{VI}0_{0} symmetries under the self-similar approach. In order to study how the \textquotedblleft constants\textquotedblright\ GG and Λ\Lambda may vary, we propose three scenarios where such constants are considered as time functions. The first model is a perfect fluid. We find that the behavior of GG and Λ\Lambda are related. If GG behaves as a growing time function then Λ\Lambda is a positive decreasing time function but if GG is decreasing then Λ\Lambda is negative. For this model we have found a new solution. The second model is a scalar field, where in a phenomenological way, we consider a modification of the Klein-Gordon equation in order to take into account the variation of GG. Our third scenario is a scalar-tensor model. We find three solutions for this models where GG is growing, constant or decreasing and Λ\Lambda is a positive decreasing function or vanishes. We put special emphasis on calculating the curvature invariants in order to see if the solutions isotropize.Comment: Typos corrected. References added, minor corrections. arXiv admin note: text overlap with arXiv:0905.247

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    A Kinematical Approach to Conformal Cosmology

    Get PDF
    We present an alternative cosmology based on conformal gravity, as originally introduced by H. Weyl and recently revisited by P. Mannheim and D. Kazanas. Unlike past similar attempts our approach is a purely kinematical application of the conformal symmetry to the Universe, through a critical reanalysis of fundamental astrophysical observations, such as the cosmological redshift and others. As a result of this novel approach we obtain a closed-form expression for the cosmic scale factor R(t) and a revised interpretation of the space-time coordinates usually employed in cosmology. New fundamental cosmological parameters are introduced and evaluated. This emerging new cosmology does not seem to possess any of the controversial features of the current standard model, such as the presence of dark matter, dark energy or of a cosmological constant, the existence of the horizon problem or of an inflationary phase. Comparing our results with current conformal cosmologies in the literature, we note that our kinematic cosmology is equivalent to conformal gravity with a cosmological constant at late (or early) cosmological times. The cosmic scale factor and the evolution of the Universe are described in terms of several dimensionless quantities, among which a new cosmological variable delta emerges as a natural cosmic time. The mathematical connections between all these quantities are described in details and a relationship is established with the original kinematic cosmology by L. Infeld and A. Schild. The mathematical foundations of our kinematical conformal cosmology will need to be checked against current astrophysical experimental data, before this new model can become a viable alternative to the standard theory.Comment: Improved version, with minor changes. 58 pages, including 7 figures and one table. Accepted for publication in General Relativity and Gravitation (GERG

    The growth factor of matter perturbations in an f(R) gravity

    Full text link
    The growth of matter perturbations in the f(R)f(R) model proposed by Starobinsky is studied in this paper. Three different parametric forms of the growth index are considered respectively and constraints on the model are obtained at both the 1σ1\sigma and 2σ2\sigma confidence levels, by using the current observational data for the growth factor. It is found, for all the three parametric forms of the growth index examined, that the Starobinsky model is consistent with the observations only at the 2σ2\sigma confidence level.Comment: 15 pages, 5 figure
    corecore