20 research outputs found

    Host-Pathogen Interactions in Guillain-Barré Syndrome : the role of Campylobacter jejuni lipooligosaccharide sialylation

    Get PDF
    *Campylobacter jejuni* (*C. jejuni*) is a spiral, comma-shaped Gram-negative bacterium which is motile due to bipolar flagella. *C. jejuni* is frequently present in the intestines of poultry and birds, where it is considered to be part of the normal intestinal flora (1). During slaughter procedures, poultry meat products often become contaminated with fecal content containing *C. jejuni* (2, 3). As a consequence of the extensive consumption of chicken worldwide, the handling of raw chicken and ingestion of undercooked chicken meat are the main causes of *C. jejuni* infection in humans (3). Apart from poultry, other sources of *C. jejuni* infection include raw milk, (swimming) water and pets (4). Upon ingestion, *C. jejuni* can pass through the human gastrointestinal tract without clinical symptoms; however, infection with *C. jejuni* will often lead to a diarrheal illness (5). In the Netherlands, approximately 80,000 people per year (range, 30,000 – 160,000) are estimated to experience acute gastroenteritis caused by *Campylobacter* (6). The symptoms include fever, abdominal pain, and slimy or bloody diarrhea that lasts for several days (7). *C. jejuni* diarrhea is self-limiting, though complications such as bacteraemia, post-infectious reactive arthritis or Guillain-Barré syndrome (GBS) occasionally occur. In view of the broad spectrum of clinical disease presentations associated with *C. jejuni* infection, microbial as well as host factors are likely to contribute to *C. jejuni* pathogenesis

    Genomic sequence of Campylobacter jejuni subsp. jejuni HS:19 Penner serotype reference strain RM3420

    Get PDF
    Campylobacter jejuni subsp. jejuni infections are a leading cause of foodborne gastroenteritis and the most prevalent antecedent to Guillain-Barré syndrome (GBS). Penner serotype HS:19 is among several capsular types shown to be markers for GBS. This study describes the genome of C. jejuni subsp. jejuni HS:19 Penner reference strain RM3420

    Complete genomic sequence of Campylobacter jejuni subsp. jejuni HS: 19 strain RM1285 isolated from packaged chicken

    Get PDF
    Poultry products serve as the main source of Campylobacter jejuni subsp. jejuni infections in humans. C. jejuni subsp. jejuni infections are a leading cause of foodborne gastroenteritis and are a prevalent antecedent to Guillain-Barré syndrome. This study describes the genome of C. jejuni subsp. jejuni HS:19 strain RM1285, isolated from packaged chicken in California

    Complete genome sequences of Campylobacter jejuni strains RM3196 (233.94) and RM3197 (308.95) isolated from patients with Guillain-Barré syndrome

    Get PDF
    Infections with Campylobacter jejuni subsp. jejuni are a leading cause of foodborne gastroenteritis and the most prevalent infection preceding Guillain-Barré syndrome (GBS). This study describes the genomes of C. jejuni subsp. jejuni HS:41 strains RM3196 (233.94) and RM3197 (308.95) that were isolated from patients with GBS in Cape Town, South Africa

    NanoGalaxy: Nanopore long-read sequencing data analysis in Galaxy

    Get PDF
    Background: Long-read sequencing can be applied to generate very long contigs and even completely assembled genomes at relatively low cost and with minimal sample preparation. As a result, long-read sequencing platforms are becoming more popular. In this respect, the Oxford Nanopore Technologies–based long-read sequencing “nanopore” platform is becoming a widely used tool with a broad range of applications and end-users. However, the need to explore and manipulate the complex data generated by long-read sequencing platforms necessitates accompanying specialized bioinformatics platforms and tools to process the long-read data correctly. Importantly, such tools should additionally help democratize bioinformatic

    Comparison of illumina versus nanopore 16s rRNA gene sequencing of the human nasal microbiota

    Get PDF
    Illumina and nanopore sequencing technologies are powerful tools that can be used to determine the bacterial composition of complex microbial communities. In this study, we compared nasal microbiota results at genus level using both Illumina and nanopore 16S rRNA gene sequencing. We also monitored the progression of nanopore sequencing in the accurate identification of species, using pure, single species cultures, and evaluated the performance of the nanopore EPI2ME 16S data analysis pipeline. Fifty-nine nasal swabs were sequenced using Illumina MiSeq and Oxford Nanopore 16S rRNA gene sequencing technologies. In addition, five pure cultures of relevant bacterial species were sequenced with the nanopore sequencing technology. The Illumina MiSeq sequence data were processed using bioinformatics modules present in the Mothur software package. Albacore and Guppy base calling, a workflow in nanopore EPI2ME (Oxford Nanopore Technologies—ONT, Oxford, UK) and an in-house developed bioinformatics script were used to analyze the nanopore data. At genus level, similar bacterial diversity profiles were found, and five main and established genera were identified by both platforms. However, probably due to mismatching of the nanopore sequence primers, the nanopore sequencing platform identified Corynebacterium in much lower abundance compared to Illumina sequencing. Further, when using default settings in the EPI2ME workflow, almost all sequence reads that seem to belong to the bacterial genus Dolosigranulum and a considerable part to the genus Haemophilus were only identified at family level. Nanopore sequencing of single species cultures demonstrated at least 88% accurate identification of the species at genus and species level for 4/5 strains tested, including improvements in accurate sequence read identification when the basecaller Guppy and Albacore, and when flowcell versions R9.4 (Oxford Nanopore Technologies—ONT, Oxford, UK) and R9.2 (Oxford Nanopore Technologies—ONT, Oxford, UK) were compared. In conclusion, the current study shows that the nanopore sequencing platform is comparable with the Illumina platform in detection bacterial genera of the nasal microbiota, but the nanopore platform does have problems in detecting bacteria within the genus Corynebacterium. Although advances are being made, thorough validation of the nanopore platform is still recommendable

    Campylobacter jejuni Translocation across Intestinal Epithelial Cells Is Facilitated by Ganglioside-Like Lipooligosaccharide Structures

    Get PDF
    Translocation across intestinal epithelial cells is an established pathogenic feature of the zoonotic bacterial species Campylobacter jejuni. The number of C. jejuni virulence factors known to be involved in translocation is limited. In the present study, we investigated whether sialylation of C. jejuni lipooligosaccharide (LOS) structures, generating human nerve ganglioside mimics, is important for intestinal epithelial translocation. We here show that C. jejuni isolates expressing ganglioside-like LOS bound in larger numbers to the Caco-2 intestinal epithelial cells than C. jejuni isolates lacking such structures. Next, we found that ganglioside-like LOS facilitated endocytosis of bacteria into Caco-2 cells, as visualized by quantitative microscopy using the early and late endosomal markers early endosome-associated protein 1 (EEA1), Rab5, and lysosome-associated membrane protein 1 (LAMP-1). This increased endocytosis was associated with larger numbers of surviving and translocating bacteria. Next, we found that two different intestinal epithelial cell lines (Caco-2 and T84) responded with an elevated secretion of the T-cell attractant CXCL10 to infection by ganglioside-like LOS-expressing C. jejuni isolates. We conclude that C. jejuni translocation across Caco-2 cells is facilitated by ganglioside-like LOS, which is of clinical relevance since C. jejuni ganglioside-like LOS-expressing isolates are linked with severe gastroenteritis and bloody stools in C. jejuni-infected patients

    WeFaceNano

    No full text
    Background: Bacterial plasmids often carry antibiotic resistance genes and are a significant factor in the spread of antibiotic resistance. The ability to completely assemble plasmid sequences would facilitate the localization of antibiotic resistance genes, the identification of genes that promote plasmid transmission and the accurate tracking of plasmid mobility. However, the complete assembly of plasmid sequences using the currently most widely used sequencing platform (Illumina-based sequencing) is restricted due to the generation of short sequence lengths. The long-read Oxford Nanopore Technologies (ONT) sequencing platform overcomes this limitation. Still, the assembly of plasmid sequence data remains challenging due to software incompatibility with long-reads and the error rate generated using ONT sequencing.

    Selective Depletion of Neuropathy-Related Antibodies from Human Serum by Monolithic Affinity Columns Containing Ganglioside Mimics

    No full text
    Monolithic columns containing ganglioside GM2 and GM3 mimics were prepared for selective removal of serum anti-ganglioside antibodies from patients with acute and chronic immune-mediated neuropathies. ELISA results demonstrated that anti-GM2 IgM antibodies in human sera and a mouse monoclonal anti-GM2 antibody were specifically and selectively adsorbed by monolithic GM2 mimic columns and not by blank monolithic columns or monolithic GM3 mimic columns. In control studies, serum antibodies against the ganglioside GQ1b from another neuropathy patient were not depleted by monolithic GM2 mimic columns. Fluorescence microscopy with FITC-conjugated anti-human immunoglobulin antibodies showed that the immobilized ganglioside mimics were evenly distributed along the column. The columns were able to capture 95% of the anti-GM2 antibodies of patients after only 2 min of incubation. A monolithic column of 4.4 µL can deplete 28.2 µL of undiluted serum. These columns are potential diagnostic and therapeutic tools for neuropathies related to anti-ganglioside antibodies
    corecore