8 research outputs found

    Low-dose heparin anticoagulation during extracorporeal life support for acute respiratory distress syndrome in conscious sheep

    No full text
    Background: Over 32% of burned battlefield causalities develop trauma-induced hypoxic respiratory failure, also known as acute respiratory distress syndrome (ARDS). Recently, 9 out of 10 US combat soldiers' survived lifethreatening trauma-induced ARDS supported with extracorporeal membrane oxygenation (ECMO), a portable form of cardiopulmonary bypass. Unfortunately, the size, incidence of coagulation complications, and the need for systematic anticoagulation for traditional ECMO devices have prevented widespread use of this lifesaving technology. Therefore, a compact, mobile, ECMO system using minimal anticoagulation may be the solution to reduce ARDS in critically ill military and civilian patients. Methods: We conducted a prospective cohort laboratory investigation to evaluate the coagulation function in an ovine model of oleic acid induced ARDS supported with veno-venous ECMO. The experimental design approximated the time needed to transport from a battlefield setting to an advanced facility and compared bolus versus standard heparin anticoagulation therapy. Results: Comprehensive coagulation and hemostasis assays did not show any difference because of ECMO support over 10 h between the two groups but did show changes because of injury. Platelet count and function did decrease with support on ECMO, but there was no significant bleeding or clot formation during the entire experiment. Conclusions: A bolus heparin injection is sufficient to maintain ECMO support for up to 10 h in an ovine model of ARDS. With a reduced need for systematic anticoagulation, ECMO use for battlefield trauma could reduce significant morbidity and mortality from ventilator-induced lung injury and ARDS. Future studies will investigate the mechanisms and therapies to support patients for longer periods on ECMO without coagulation complications. Level of Evidence: V-therapeutic animal experiment

    Electron Microscopy as a Tool for Assessment of Anticoagulation Strategies during Extracorporeal Life Support : The Proof Is on the Membrane

    No full text
    Extracorporeal life support (ECLS) is fast becoming more common place for use in adult patients failing mechanical ventilation. Management of coagulation and thrombosis has long been a major complication in the use of ECLS therapies. Scanning electron microscopy (SEM) of membrane oxygenators (MOs) after use in ECLS circuits can offer novel insight into any thrombotic material deposition on the MO. In this pilot study, we analyzed five explanted MOs immediately after use in a sheep model of different acute respiratory distress syndrome (ARDS). We describe our methods of MO dissection, sample preparation, image capture, and results. Of the five MOs analyzed, those that received continuous heparin infusion showed very little thrombosis formation or other clot material, whereas those that were used with only initial heparin bolus showed readily apparent thrombotic material

    Effect of double dose oseltamivir on clinical and virological outcomes in children and adults admitted to hospital with severe influenza: Double blind randomised controlled trial

    No full text
    10.1136/bmj.f3039BMJ (Online)3467911-BMJO

    SiD Letter of Intent

    No full text
    Letter of intent describing SiD (Silicon Detector) for consideration by the International Linear Collider IDAG panel. This detector concept is founded on the use of silicon detectors for vertexing, tracking, and electromagnetic calorimetry. The detector has been cost-optimized as a general-purpose detector for a 500 GeV electron-positron linear collider.Letter of intent describing SiD (Silicon Detector) for consideration by the International Linear Collider IDAG panel. This detector concept is founded on the use of silicon detectors for vertexing, tracking, and electromagnetic calorimetry. The detector has been cost-optimized as a general-purpose detector for a 500 GeV electron-positron linear collider

    ATLAS Liquid Argon Calorimeter Phase-II Upgrade Technical Design Report

    No full text
    corecore