23 research outputs found
On the universal identity in second order hydrodynamics
Theoretical Physic
A note on conductivity and charge diffusion in holographic flavour systems
We analyze the charge diffusion and conductivity in a Dp/Dq holographic setup
that is dual to a supersymmetric Yang-Mills theory in p+1 dimensions with N_f<<
N_c flavour degrees of freedom at finite temperature and nonvanishing U(1)
baryon number chemical potential. We provide a new derivation of the results
that generalize the membrane paradigm to the present context. We perform a
numerical analysis in the particular case of the D3/D7 flavor system. The
results obtained support the validity of the Einstein relation at finite
chemical potential.Comment: 15 pages, 3 figures, v2 with minor correction
Perturbations of anti-de Sitter black holes
I review perturbations of black holes in asymptotically anti-de Sitter space.
I show how the quasi-normal modes governing these perturbations can be
calculated analytically and discuss the implications on the hydrodynamics of
gauge theory fluids per the AdS/CFT correspondence. I also discuss phase
transitions of hairy black holes with hyperbolic horizons and the dual
superconductors emphasizing the analytical calculation of their properties.Comment: 25 pages, 4 figures, prepared for the proceedings of the 5th Aegean
Summer School "From Gravity to Thermal Gauge Theories: the AdS/CFT
Correspondence," Milos, Greece, September 2009
Area Spectrum of Extremal Reissner-Nordstr\"om Black Holes from Quasi-normal Modes
Using the quasi-normal modes frequency of extremal Reissner-Nordstr\"om black
holes, we obtain area spectrum for these type of black holes. We show that the
area and entropy black hole horizon are equally spaced. Our results for the
spacing of the area spectrum differ from that of schwarzschild black holes.Comment: 6 pages, no figure, accepted for publication in Phys. Rev.
Gravitational quasinormal radiation of higher-dimensional black holes
We find the gravitational resonance (quasinormal) modes of the higher
dimensional Schwarzschild and Reissner-Nordstrem black holes. The effect on the
quasinormal behavior due to the presence of the term is investigated.
The QN spectrum is totally different for different signs of . In more
than four dimensions there excited three types of gravitational modes: scalar,
vector, and tensor. They produce three different quasinormal spectra, thus the
isospectrality between scalar and vector perturbations, which takes place for
D=4 Schwarzschild and Schwarzschild-de-Sitter black holes, is broken in higher
dimensions. That is the scalar-type gravitational perturbations, connected with
deformations of the black hole horizon, which damp most slowly and therefore
dominate during late time of the black hole ringing.Comment: 13 pages, 2 figures, several references are adde
Analytic calculation of quasi-normal modes
We discuss the analytic calculation of quasi-normal modes of various types of
perturbations of black holes both in asymptotically flat and anti-de Sitter
spaces. We obtain asymptotic expressions and also show how corrections can be
calculated perturbatively. We pay special attention to low-frequency modes in
anti-de Sitter space because they govern the hydrodynamic properties of a gauge
theory fluid according to the AdS/CFT correspondence. The latter may have
experimental consequencies for the quark-gluon plasma formed in heavy ion
collisions.Comment: 33 pages, prepared for the proceedings of the 4th Aegean Summer
School on Black Holes, Mytilene, Greece, September 200
Quasinormal modes for massless topological black holes
An exact expression for the quasinormal modes of scalar perturbations on a
massless topological black hole in four and higher dimensions is presented. The
massive scalar field is nonminimally coupled to the curvature, and the horizon
geometry is assumed to have a negative constant curvature.Comment: CECS style, 11 pages, no figures. References adde
Quasinormal behavior of the D-dimensional Schwarzshild black hole and higher order WKB approach
We study characteristic (quasinormal) modes of a -dimensional Schwarzshild
black hole. It proves out that the real parts of the complex quasinormal modes,
representing the real oscillation frequencies, are proportional to the product
of the number of dimensions and inverse horizon radius . The
asymptotic formula for large multipole number and arbitrary is derived.
In addition the WKB formula for computing QN modes, developed to the 3rd order
beyond the eikonal approximation, is extended to the 6th order here. This gives
us an accurate and economic way to compute quasinormal frequencies.Comment: 15 pages, 6 figures, the 6th order WKB formula for computing QNMs in
Mathematica is available from https://goo.gl/nykYG
Dirac quasinormal modes of the Reissner-Nordstr\"om de Sitter black hole
The quasinormal modes of the Reissner-Nordstr\"om de Sitter black hole for
the massless Dirac fields are studied using the P\"oshl-Teller potential
approximation. We find that the magnitude of the imaginary part of the
quasinormal frequencies decreases as the cosmological constant or the orbital
angular momentum increases, but it increases as the charge or the overtone
number increases. An interesting feature is that the imaginary part is almost
linearly related to the real part as the cosmological constant changes for
fixed charge, and the linearity becomes better as the orbital angular momentum
increases. We also prove exactly that the Dirac quasinormal frequencies are the
same for opposite chirality.Comment: 10 pages, 6 figures, Phys. Rev. D in pres
The Finite Temperature SU(2) Savvidy Model with a Non-trivial Polyakov Loop
We calculate the complete one-loop effective potential for SU(2) gauge bosons
at temperature T as a function of two variables: phi, the angle associated with
a non-trivial Polyakov loop, and H, a constant background chromomagnetic field.
Using techniques broadly applicable to finite temperature field theories, we
develop both low and high temperature expansions. At low temperatures, the real
part of the effective potential V_R indicates a rich phase structure, with a
discontinuous alternation between confined (phi=pi) and deconfined phases
(phi=0). The background field H moves slowly upward from its zero-temperature
value as T increases, in such a way that sqrt(gH)/(pi T) is approximately an
integer. Beyond a certain temperature on the order of sqrt(gH), the deconfined
phase is always preferred. At high temperatures, where asymptotic freedom
applies, the deconfined phase phi=0 is always preferred, and sqrt(gH) is of
order g^2(T)T. The imaginary part of the effective potential is non-zero at the
global minimum of V_R for all temperatures. A non-perturbative magnetic
screening mass of the form M_m = cg^2(T)T with a sufficiently large coefficient
c removes this instability at high temperature, leading to a stable
high-temperature phase with phi=0 and H=0, characteristic of a
weakly-interacting gas of gauge particles. The value of M_m obtained is
comparable with lattice estimates.Comment: 28 pages, 5 eps figures; RevTeX 3 with graphic