4 research outputs found
An approach to construct wave packets with complete classical-quantum correspondence in non-relativistic quantum mechanics
We introduce a method to construct wave packets with complete classical and
quantum correspondence in one-dimensional non-relativistic quantum mechanics.
First, we consider two similar oscillators with equal total energy. In
classical domain, we can easily solve this model and obtain the trajectories in
the space of variables. This picture in the quantum level is equivalent with a
hyperbolic partial differential equation which gives us a freedom for choosing
the initial wave function and its initial slope. By taking advantage of this
freedom, we propose a method to choose an appropriate initial condition which
is independent from the form of the oscillators. We then construct the wave
packets for some cases and show that these wave packets closely follow the
whole classical trajectories and peak on them. Moreover, we use de-Broglie Bohm
interpretation of quantum mechanics to quantify this correspondence and show
that the resulting Bohmian trajectories are also in a complete agreement with
their classical counterparts.Comment: 15 pages, 13 figures, to appear in International Journal of
Theoretical Physic
Quantization And Classical Limit Of A Linearly Damped Particle, A Van Der Pol System And A Duffing System
Using a quantization process, independent of Lagrangians and Hamiltonians, we quantize a linearly damped particle, a van der Pol System and a Duffing System. In order to provide logical consistence to this quantization scheine, which we call dynamic quantization, we also evaluate the classical limit h 0 about the quantum equations of motion. © 2000 VSP.93275286Arnold, V.I., (1973) Ordinary Differential Equations, , Massachusetts Institute of Technology Press, MassachusettsKolmogorov, A.N., Abrahan, R., Marsden, J.E., (1978) Foundations of Mechanics, , Benjamin, Menlo ParkFronteau, J., (1979) Hadronic J., 2, p. 727Lichtenberg, A.J., Lieberman, M.A., (1983) Regular and Stochastic Motion, , Springer-Verlag, New YorkOtt, E., (1993) Chaos in Dynamical Systems, , Cambridge University Press, CambrigdeNicolis, G., (1995) Introduction to Nonlinear Science, , Cambridge University Press, CambrigdeTarasov, V.E., (1997) Theor. Math. Phys., 110, p. 57Nicolis, G., Prigogine, I., (1989) Exploring Complexity, , W. E. Freeman, New YorkBateman, H., (1931) Phys. Rev., 38, p. 815Kanai, E., (1948) Progr. Theor. Phys., 3, p. 440Brittin, W.E., (1950) Phys. Rev., 77, p. 396Kerner, E.H., (1958) Can. J. Phys., 36, p. 371Stevens, K.W.H., (1958) Proc. Phys. Soc., 62, p. 1027Myers, V.W., (1979) Am. J. Phys., 27, p. 507Denman, H.H., (1966) Am. J. Phys., 34, p. 1147Denman, H.H., Buch, L.H., (1973) J. Math. Phys., 14, p. 326Hasse, R.W., (1975) J. Math. Phys., 16, p. 2005Dodonov, V.V., Man'Ko, V.I., (1978) N. Cimento B, 44, p. 265Lemos, N.A., (1979) Am. J. Phys., 47, p. 857Pedrosa, I.A., Baseia, B., (1983) Hadronic J., 6, p. 1733Kobe, D.H., Reali, G., Sieniutycz, S., (1986) Am. J. Phys., 54, p. 997Ulm, C.I., Yeon, K.H., Kahng, W.H., (1987) J. Phys. A, 20, p. 611Marchiolli, M.A., Mizrahi, S.S., (1997) J. Phys. A, 30, p. 2619Menon, V., Chanana, N., Singh, Y., (1997) Progr. Theor. Phys., 98, p. 321Havas, P., (1957) N. Cimento (Suppl.), 5, p. 363Santilli, R.M., (1978) Foundations of Theoretical Mechanics i, , Springer-Verlag, New YorkEdwards, I.K., (1979) Am. J. Phys., 47, p. 153Pedrosa, I.A., Baseia, B., (1983) Hadronic J., 6, p. 1733Cervero, J.M., Villarroel, J., (1984) J. Phys. A, 17, p. 2963Ray, J.R., (1979) Am. J. Phys., 47, p. 626Greenberger, D.M., (1979) J. Math. Phys., 20, p. 762Herrera, L., Nunez, L., Patifio, A., Rago, H., (1986) Am. J. Phys., 54, p. 273Dekker, H., (1975) Zeit. Phys. B, 21, p. 295Dekker, H., (1977) Phys. Rev. A, 16, p. 2126Dekker, H., (1979) Physica A, 95, p. 311Enz, C.P., (1994) Found. Phys., 24, p. 1281Caldirola, P., (1983) Hadronic J., 6, p. 1400Cimento, N., (1983) B, 77, p. 241Tarasov, V.E., (1994) Theor. Math. Phys., 100, p. 1100Hayakawa, S., (1965) Progr. Theor. Phys. (Suppl.), 532Surdin, M., (1971) Int. J. Theor. Phys., 4, p. 117Dechoum, K., Franga, H.M., Malta, C.P., (1998) Phys. Lett. A, 248, p. 93Dechoum, K., Franga, H.M., (1995) Found. Phys., 25, p. 1599(1996) Erratum, 26, p. 1573. , ibidenBolivar, A.O., (1998) Phys. Rev. A, 58, p. 4330Olavo, L.S.F., (1999) Physica A, 262, p. 197Gerlich, G., (1973) Physica, 69, p. 458Steeb, W.-H., (1979) Physica A, 95, p. 181Caldeira, A.O., Leggett, A.J., (1983) Physica A, 121, p. 587Pol Der B.Van, (1927) Phil. Mag., 3, p. 65Guckenheimer, J., Holmes, P., (1983) Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, , Springer-Verlag, New YorkHermann, R., (1973) Geometry Physics and System, , Marcel Dekker, New YorkFields, G., (1975) Cartan-Ehresmann Connections, , Math. Sci. Press, New YorkBohm, D., (1951) Quantum Theory, , Prentice-Hall, New YorkWigner, E.P., (1932) Phys. Rev., 40, p. 749Hillery, M., O'Connell, R.F., Scully, M.O., Wigner, E.P., (1984) Phys. Rep., 106, p. 121Lee, H.-W., (1995) Phys. Rep., 259, p. 147Heller, J., (1976) J. Chem. Phys., 65, p. 1289Caldeira, A.O., private CommunicationOlavo, L.S.F., (1999) Physica A, 271, p. 260Grib, A.A., Rodrigues Jr., W.A., (1999) Nonlocality in Quantum Physics, , Kluwer Academic/Plenum Publishers, New Yor