26 research outputs found

    Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes

    No full text
    Among the key antioxidant enzymes, thioredoxin and glutaredoxin systems play an important role in cell defense against oxidative stress and maintenance of redox homeostasis owing to the regulation of thiol-disulfide exchange. The thioredoxin isoforms Trx1 (cytoplasmic form) and Trx2 (mitochondrial form) can reduce inter- and intramolecular disulfide bonds in proteins, in particular, in oxidized peroxiredoxins, which disrupt organic hydroperoxides, H 2O2, and peroxynitrite. NADPH-dependent thioredoxin reductase, which reduces a broad range of substrates including oxidized form of thioredoxin, can also directly reduce lipid hydroperoxides, H2O 2, and dehydroascorbic and lipoic acids. Glutaredoxin, whose major isoforms in mammals are Grx1, Grx2, and Grx5, as well as thioredoxin, catalyzes S-glutathionylation and deglutathionylation of proteins to protect SH-groups from oxidation and restore functionally active thiols. However, in contrast to thioredoxin, glutaredoxin reduces GSH-mixed disulfides and catalyzes the reaction not only via a dithiol mechanism but also via monothiol reduction. In addition to the role in cellular antioxidant defense, all of the reviewed redox proteins (thioredoxin, thioredoxin reductase, peroxiredoxin, and glutaredoxin) have a number of significant functions required for cell viability: they regulate transcription factor activities, play the role of growth factors, serve as enzyme cofactors, take part in regulation of cell cycle, and are involved in antiapoptotic mechanisms. © 2008 MAIK Nauka

    Involvement of thio-, peroxi-, and glutaredoxins in cellular redox-dependent processes

    No full text
    Among the key antioxidant enzymes, thioredoxin and glutaredoxin systems play an important role in cell defense against oxidative stress and maintenance of redox homeostasis owing to the regulation of thiol-disulfide exchange. The thioredoxin isoforms Trx1 (cytoplasmic form) and Trx2 (mitochondrial form) can reduce inter- and intramolecular disulfide bonds in proteins, in particular, in oxidized peroxiredoxins, which disrupt organic hydroperoxides, H 2O2, and peroxynitrite. NADPH-dependent thioredoxin reductase, which reduces a broad range of substrates including oxidized form of thioredoxin, can also directly reduce lipid hydroperoxides, H2O 2, and dehydroascorbic and lipoic acids. Glutaredoxin, whose major isoforms in mammals are Grx1, Grx2, and Grx5, as well as thioredoxin, catalyzes S-glutathionylation and deglutathionylation of proteins to protect SH-groups from oxidation and restore functionally active thiols. However, in contrast to thioredoxin, glutaredoxin reduces GSH-mixed disulfides and catalyzes the reaction not only via a dithiol mechanism but also via monothiol reduction. In addition to the role in cellular antioxidant defense, all of the reviewed redox proteins (thioredoxin, thioredoxin reductase, peroxiredoxin, and glutaredoxin) have a number of significant functions required for cell viability: they regulate transcription factor activities, play the role of growth factors, serve as enzyme cofactors, take part in regulation of cell cycle, and are involved in antiapoptotic mechanisms. © 2008 MAIK Nauka

    Expression of genes for redox-dependent glutathione S-transferase isoforms GSTP1-1 and GSTA4-4 in tumor cell during the development doxorubicin resistance

    No full text
    Expression of genes for redox-dependent glutathione S-transferase isoforms GSTP1-1 and GSTA4-4 in tumor cells K562, MCF-7, and SKOV-3 was studied during the development of resistance to doxorubicin. It was found that the development of resistance was accompanied by predominant increase in the expression of hGSTP1 gene in MCF-7 cells, and hGSTA4 gene in resistant K562/DOX and SKVLB cells. © Springer Science+Business Media, Inc. 2007

    Current views of antioxidative activity of glutathione and glutathione-depending enzymes

    No full text
    Reduced glutathione (GSH), gamma-glutamyl-L-cysteineglycine, is a tri peptide widespread in plants, animals, and man as a low-molecular weight SH-containing compound. This review presents results of published and original studies concerned with the synthesis and the role of glutathione and glutathione-dependent enzymes in antioxidative processes, such as maintenance and regulation of cell status, glutathionilation and deglutathionilation, redox-dependent signaling, and apoptosis
    corecore