1,077 research outputs found

    Wave attenuation to clock sojourn times

    Full text link
    The subject of time in quantum mechanics is of perennial interest especially because there is no observable for the time taken by a particle to transmit (or reflect) from a particular region. Several methods have been proposed based on scattering phase shifts and using different quantum clocks, where the time taken is clocked by some external input or indirectly from the phase of the scattering amplitudes. In this work we give a general method for calculating conditional sojourn times based on wave attenuation. In this approach clock mechanism does not couple to the Hamiltonian of the system. For simplicity, specific case of a delta dimer is considered in detail. Our analysis re-affirms recent results based on correcting quantum clocks using optical potential methods, albeit in a much simpler way.Comment: 4 pages, 5 figures. Minor corrections made and journal reference adde

    Analytical results for the Coqblin-Schrieffer model with generalized magnetic fields

    Full text link
    Using the approach alternative to the traditional Thermodynamic Bethe Ansatz, we derive analytical expressions for the free energy of Coqblin-Schrieffer model with arbitrary magnetic and crystal fields. In Appendix we discuss two concrete examples including the field generated crossover from the SU(4) to the SU(2) symmetry in the SU(4)-symmetric model.Comment: 5 page

    Symmetry Breaking Using Value Precedence

    Full text link
    We present a comprehensive study of the use of value precedence constraints to break value symmetry. We first give a simple encoding of value precedence into ternary constraints that is both efficient and effective at breaking symmetry. We then extend value precedence to deal with a number of generalizations like wreath value and partial interchangeability. We also show that value precedence is closely related to lexicographical ordering. Finally, we consider the interaction between value precedence and symmetry breaking constraints for variable symmetries.Comment: 17th European Conference on Artificial Intelligenc

    Higgs Boson Flavor-Changing Neutral Decays into Bottom Quarks in Supersymmetry

    Full text link
    We analyze the maximum branching ratios for the Flavor Changing Neutral Current (FCNC) decays of the neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) into bottom quarks, h -> b\bar{s} (h=h^0,H^0,A^0). We consistently correlate these decays with the radiative B-meson decays (b-> s\gamma). A full-fledged combined numerical analysis is performed of these high-energy and low-energy FCNC decay modes in the MSSM parameter space. Our calculation shows that the available data on B(b->s \gamma) severely restricts the allowed values of B(h->b\bar{s}). While the latter could reach a few percent level in fine-tuned scenarios, the requirement of naturalness reduces these FCNC rates into the modest range B(h->b\bar{s}) ~ 10^{-4}-10^{-3}. We find that the bulk of the MSSM contribution to B(h->b\bar{s}) could originate from the strong supersymmetric sector. The maximum value of the FCNC rates obtained in this paper disagree significantly with recent (over-)estimates existing in the literature. Our results are still encouraging because they show that the FCNC modes h->b\bar{s} can be competitive with other Higgs boson signatures and could play a helpful complementary role to identify the supersymmetric Higgs bosons, particularly the lightest CP-even state in the critical LHC mass region m_{h^0} ~= 90-130 GeV.Comment: LaTeX, 19 pages, 4 tables, 7 figures. Clarifications and discussions added, references added. Slight changes in Figs2b,6b and 7b. Version accepted in JHE

    Magnetic and charge structures in itinerant-electron magnets: Coexistence of multiple SDW and CDW

    Full text link
    A theory of Kondo lattices is applied to studying possible magnetic and charge structures of itinerant-electron antiferromagnets. Even helical spin structures can be stabilized when the nesting of the Fermi surface is not sharp and the superexchange interaction, which arises from the virtual exchange of pair excitations across the Mott-Hubbard gap, is mainly responsible for magnetic instability. Sinusoidal spin structures or spin density waves (SDW) are only stabilized when the nesting of the Fermi surface is sharp enough and a novel exchange interaction arising from that of pair excitations of quasi-particles is mainly responsible for magnetic instability. In particular, multiple SDW are stabilized when their incommensurate ordering wave-numbers ±Q\pm{\bf Q} are multiple; magnetizations of different ±Q\pm{\bf Q} components are orthogonal to each other in double and triple SDW when magnetic anisotropy is weak enough. Unless ±2Q\pm 2{\bf Q} are commensurate, charge density waves (CDW) with ±2Q\pm 2{\bf Q} coexist with SDW with ±Q\pm{\bf Q}. Because the quenching of magnetic moments by the Kondo effect depends on local numbers of electrons, the phase of CDW or electron densities is such that magnetic moments are large where the quenching is weak. It is proposed that the so called stipe order in cuprate-oxide high-temperature superconductors must be the coexisting state of double incommensurate SDW and CDW.Comment: 10 pages, no figure

    Time of arrival through interacting environments: Tunneling processes

    Full text link
    We discuss the propagation of wave packets through interacting environments. Such environments generally modify the dispersion relation or shape of the wave function. To study such effects in detail, we define the distribution function P_{X}(T), which describes the arrival time T of a packet at a detector located at point X. We calculate P_{X}(T) for wave packets traveling through a tunneling barrier and find that our results actually explain recent experiments. We compare our results with Nelson's stochastic interpretation of quantum mechanics and resolve a paradox previously apparent in Nelson's viewpoint about the tunneling time.Comment: Latex 19 pages, 11 eps figures, title modified, comments and references added, final versio

    Quantum impurity solvers using a slave rotor representation

    Full text link
    We introduce a representation of electron operators as a product of a spin-carry ing fermion and of a phase variable dual to the total charge (slave quantum rotor). Based on this representation, a new method is proposed for solving multi-orbital Anderson quantum impurity models at finite interaction strength U. It consists in a set of coupled integral equations for the auxiliary field Green's functions, which can be derived from a controlled saddle-point in the limit of a large number of field components. In contrast to some finite-U extensions of the non-crossing approximation, the new method provides a smooth interpolation between the atomic limit and the weak-coupling limit, and does not display violation of causality at low-frequency. We demonstrate that this impurity solver can be applied in the context of Dynamical Mean-Field Theory, at or close to half-filling. Good agreement with established results on the Mott transition is found, and large values of the orbital degeneracy can be investigated at low computational cost.Comment: 18 pages, 15 figure

    Nuclear Alpha-Particle Condensates

    Full text link
    The α\alpha-particle condensate in nuclei is a novel state described by a product state of α\alpha's, all with their c.o.m. in the lowest 0S orbit. We demonstrate that a typical α\alpha-particle condensate is the Hoyle state (Ex=7.65E_{x}=7.65 MeV, 02+0^+_2 state in 12^{12}C), which plays a crucial role for the synthesis of 12^{12}C in the universe. The influence of antisymmentrization in the Hoyle state on the bosonic character of the α\alpha particle is discussed in detail. It is shown to be weak. The bosonic aspects in the Hoyle state, therefore, are predominant. It is conjectured that α\alpha-particle condensate states also exist in heavier nαn\alpha nuclei, like 16^{16}O, 20^{20}Ne, etc. For instance the 06+0^+_6 state of 16^{16}O at Ex=15.1E_{x}=15.1 MeV is identified from a theoretical analysis as being a strong candidate of a 4α4\alpha condensate. The calculated small width (34 keV) of 06+0^+_6, consistent with data, lends credit to the existence of heavier Hoyle-analogue states. In non-self-conjugated nuclei such as 11^{11}B and 13^{13}C, we discuss candidates for the product states of clusters, composed of α\alpha's, triton's, and neutrons etc. The relationship of α\alpha-particle condensation in finite nuclei to quartetting in symmetric nuclear matter is investigated with the help of an in-medium modified four-nucleon equation. A nonlinear order parameter equation for quartet condensation is derived and solved for α\alpha particle condensation in infinite nuclear matter. The strong qualitative difference with the pairing case is pointed out.Comment: 71 pages, 41 figures, review article, to be published in "Cluster in Nuclei (Lecture Notes in Physics) - Vol.2 -", ed. by C. Beck, (Springer-Verlag, Berlin, 2011

    The frequency of transforming growth factor-TGF-B gene polymorphisms in a normal southern Iranian population

    Get PDF
    Several single nucleotide polymorphisms (SNPs) of the transforming growth factor-β1 gene (TGFB1) have been reported. Determination of TGFB1 SNPs allele frequencies in different ethnic groups is useful for both population genetic analyses and association studies with immunological diseases. In this study, five SNPs of TGFB1 were determined in 325 individuals from a normal southern Iranian population using polymerase chain reaction-restriction fragment length polymorphism method. This population was in Hardy-Weinberg equilibrium for these SNPs. Of the 12 constructed haplotypes, GTCGC and GCTGC were the most frequent in the normal southern Iranian population. Comparison of genotype and allele frequencies of TGFB SNPs between Iranian and other populations (meta-analysis) showed significant differences, and in this case the southern Iranian population seems genetically similar to Caucasoid populations. However, neighbour-joining tree using Nei's genetic distances based on TGF-β1 allele frequencies showed that southern Iranians are genetically far from people from the USA, Germany, UK, Denmark and the Czech Republic. In conclusion, this is the first report of the distribution of TGFB1 SNPs in an Iranian population and the results of this investigation may provide useful information for both population genetic and disease studies. © 2008 The Authors

    Theory of Kondo lattices and its application to high-temperature superconductivity and pseudo-gaps in cuprate oxides

    Full text link
    A theory of Kondo lattices is developed for the t-J model on a square lattice. The spin susceptibility is described in a form consistent with a physical picture of Kondo lattices: Local spin fluctuations at different sites interact with each other by a bare intersite exchange interaction, which is mainly composed of two terms such as the superexchange interaction, which arises from the virtual exchange of spin-channel pair excitations of electrons across the Mott-Hubbard gap, and an exchange interaction arising from that of Gutzwiller's quasi-particles. The bare exchange interaction is enhanced by intersite spin fluctuations developed because of itself. The enhanced exchange interaction is responsible for the development of superconducting fluctuations as well as the Cooper pairing between Gutzwiller's quasi-particles. On the basis of the microscopic theory, we develop a phenomenological theory of low-temperature superconductivity and pseudo-gaps in the under-doped region as well as high-temperature superconductivity in the optimal-doped region. Anisotropic pseudo-gaps open mainly because of d\gamma-wave superconducting low-energy fluctuations: Quasi-particle spectra around (\pm\pi/a,0) and (0,\pm\pi/a), with a the lattice constant, or X points at the chemical potential are swept away by strong inelastic scatterings, and quasi-particles are well defined only around (\pm\pi/2a,\pm\pi/2a) on the Fermi surface or line. As temperatures decrease in the vicinity of superconducting critical temperatures, pseudo-gaps become smaller and the well-defined region is extending toward X points. The condensation of d\gamma-wave Cooper pairs eventually occurs at low enough temperatures when the pair breaking by inelastic scatterings becomes small enough.Comment: 15 pages, 14 figure
    corecore