5 research outputs found

    Gravitational waves in an anomaly-induced inflation

    Full text link
    The behaviour of gravitational waves in the anomaly-induced inflationary phase is studied. The metric perturbations exhibit a stable behaviour, with a very moderate growth in the amplitude of the waves. The spectral indice is computed, revealing an almost flat spectrum.Comment: 4 pages. Talk presented at IRGA 2003 (Renormalization Group and Anomalies in Gravitation and Cosmology, Ouro Preto, Brazil, 16-23 March, 2003

    On the stability of the anomaly-induced inflation

    Get PDF
    We analyze various phases of inflation based on the anomaly-induced effective action of gravity (modified Starobinsky model), taking the cosmological constant Lambda and k=0, +/- 1 topologies into account. The total number of the inflationary e-folds may be enormous, but at the last 65 of them the inflation greatly slows down due to the contributions of the massive particles. For the supersymmetric particle content, the stability of inflation holds from the initial point at the sub-Planck scale until the supersymmetry breaks down. After that the universe enters into the unstable regime with the eventual transition into the stable FRW-like evolution with small positive cosmological constant. It is remarkable, that all this follows automatically, without fine-tuning of any sort, independent on the values of Lambda and k. Finally, we consider the stability under the metric perturbations during the last 65 e-folds of inflation and find that the amplitude of the ones with the wavenumber below a certain cutoff has an acceptable range.Comment: 27 pages, LaTeX, 8 figures, some misprints correcte

    Renormalization Group and Decoupling in Curved Space: II. The Standard Model and Beyond

    Full text link
    We continue the study of the renormalization group and decoupling of massive fields in curved space, started in the previous article and analyse the higher derivative sector of the vacuum metric-dependent action of the Standard Model. The QCD sector at low-energies is described in terms of the composite effective fields. For fermions and scalars the massless limit shows perfect correspondence with the conformal anomaly, but similar limit in a massive vector case requires an extra compensating scalar. In all three cases the decoupling goes smoothly and monotonic. A particularly interesting case is the renormalization group flow in the theory with broken supersymmetry, where the sign of one of the beta-functions changes on the way from the UV to IR.Comment: 27 pages, 8 figure

    Bianchi VIIAVII_A solutions of quadratic gravity

    Full text link
    It is believed that soon after the Planck time, Einstein's general relativity theory should be corrected to an effective quadratic theory. Numerical solutions for the anisotropic generalization of the Friedmann "open" model H3H^ 3 for this effective gravity are given. It must be emphasized that although numeric, these solutions are exact in the sense that they depend only on the precision of the machine. The solutions are identified asymptotically in a certain way. It is found solutions which asymptote de Sitter space, Riemann flat space and a singularity. The question of isotropisation of an initially anisotropic Universe is of great importance in the context of cosmology. Although isotropisation is not directly discussed in this present work, we show that sufficiently small anisotropies, do not increase indefinitely according to particular quadratic gravity theories. It can be understood as weak isotropisation, and we stress that this result is strongly dependent on initial conditions.Comment: version accepted for publication in General Relativity and Gravitation. arXiv admin note: substantial text overlap with arXiv:1203.688
    corecore