28 research outputs found

    Charge manipulation and imaging of the Mn acceptor state in GaAs by Cross-sectional Scanning Tunneling Microscopy

    Full text link
    An individual Mn acceptor in GaAs is mapped by Cross-sectional Scanning Tunneling Microscopy (X-STM) at room temperature and a strongly anisotropic shape of the acceptor state is observed. An acceptor state manifests itself as a cross-like feature which we attribute to a valence hole weakly bound to the Mn ion forming the (Mn2+3d5+hole^{2+}3d^5+hole) complex. We propose that the observed anisotropy of the Mn acceptor wave-function is due to the d-wave present in the acceptor ground state.Comment: Proceedings of the SIMD-4 conference. Hawaii, USA (December 1-5, 2003

    Magnetization reversal process and nonlinear magneto-impedance in Cu/NiFe and Nb/NiFe composite wires

    Full text link
    The magnetization reversal of Cu/NiFe and Nb/NiFe composite wires carrying AC current is studied. The frequency spectrum of a voltage induced in a pick-up coil wound around the wire is analyzed. The frequency spectrum is shown to consist of even harmonics within a wide range of AC current amplitudes and longitudinal DC magnetic fields. The strong dependencies of the harmonic amplitudes on the DC field are found. The results obtained may be of importance for the design of weak magnetic field sensors.Comment: 8 pages, 4 figures, publishe

    Imaging of the [Mn2+(3d5) + hole] complex in GaAs by Cross-sectional Scanning Tunneling Microscopy

    Full text link
    We present results on the direct spatial mapping of the wave-function of a hole bound to a Mn acceptor in GaAs. To investigate individual Mn dopants at the atomic scale in both ionized and neutral configurations, we used a room temperature cross-sectional scanning tunneling microscope (X-STM). We found that in the neutral configuration manganese manifests itself as an anisotropic cross-like feature. We attribute this feature to a hole weakly bound to the Mn ion forming the [Mn2+(3d5) + hole] complex.Comment: 4 pages, 7 figure

    Magnetic spin excitations in Mn doped GaAs : A model study

    Full text link
    We provide a quantitative theoretical model study of the dynamical magnetic properties of optimally annealed Ga1−x_{1-x}Mnx_xAs. This model has already been shown to reproduce accurately the Curie temperatures for Ga1−x_{1-x}Mnx_xAs. Here we show that the calculated spin stiffness are in excellent agreement with those which were obtained from ab-initio based studies. In addition, an overall good agreement is also found with available experimental data. We have also evaluated the magnon density of states and the typical density of states from which the "mobility edge", separating the extended from localized magnon states, was determined. The power of the model lies in its ability to be generalized for a broad class of diluted magnetic semiconductor materials, thus it bridges the gap between first principle calculations and model based studies.Comment: 5 pages, 5 figures, Text and some figures revised to match the accepted versio

    Mn in GaAs studied by X-STM : from a single impurity to ferromagnetic layers

    Get PDF
    Abstract in thesi

    Multilayers for the lithography generation beyond EUVL

    No full text
    A potential candidate for the new generation lithography beyond EUV is La/B4C multilayer optics for λ = 6.x nm. Achieving the highest possible reflectance at near normal (1.5°) incidence requires substantial practical improvement of the structural perfection of the multilayers. Pure La/B4C multilayers suffer from the formation of relatively thick interlayer at the interfaces. We have found that N-ion and N2 gas treatment of the multilayer interfaces strongly reduces interlayer formation and therefore enhances the multilayer optical contrast which leading to increase of the reflectivity at 6.x nm. The wavelength dependence of the La/B4C and LaN/B4C multilayer reflectivity has been studied in order to investigate the spectral properties of multilayers near B-absorption edge. Calculation of the maximal reflectance for La/B4C and LaN/B4C reflectivity for various wavelengths (figure 1) predicts significant gain in reflectance near the B absorption edge. We will present the influence of N-ions treatment on reflectivity properties of La/B4C multilayers near the B absorption edge and discuss the effect on throughput of an entire lithography system

    Short period La/B and LaN/B multilayer mirrors for similar to 6.8 nm wavelength

    No full text
    In the first part of this article we experimentally show that contrast between the very thin layers of La and B enables close to theoretical reflectance. The reflectivity at 6.8 nm wavelength was measured from La/B multilayer mirrors with period thicknesses ranging from 3.5 to 7.2 nm at the appropriate angle for constructive interference. The difference between the measured reflectance and the reflectance calculated for a perfect multilayer structure decreases with increasing multilayer period. The reflectance of the multilayer with the largest period approaches the theoretical value, showing that the optical contrast between the very thin layers of these structures allows to experimentally access close to theoretical reflectance. In the second part of the article we discuss the structure of La/B and LaN/B multilayers. This set of multilayers is probed by hard X-rays (lambda = 0.154 nm) and EUV radiation (lambda = 6.8 nm). The structure is reconstructed based on a simultaneous fit of the grazing incidence hard X-ray reflectivity and the EUV reflectivity curves. The reflectivity analysis of the La/B and LaN/B multilayer mirrors shows that the lower reflectance of La/B mirrors compared to LaN/B mirrors can be explained by the presence of 5% of La atoms in the B layer and 63% of B in La layer. After multi-parametrical optimization of the LaN/B system, including the nitridation of La, the highest near normal incidence reflectivity of 57.3% at 6.6 nm wavelength has been measured from a multilayer mirror, containing 175 bi-layers. This is the highest value reported so far. (C) 2013 Optical Society of Americ

    Wavelength selection for multilayer coatings for lithography generation beyond extreme ultraviolet

    No full text
    The spectral properties of LaN/B and LaN∕B4C multilayer mirrors have been investigated in the 6.5 to 6.9 nm wavelength range, based on measured B and B4C optical constants. We show that the wavelength of optimal reflectance for boron-based optics is between 6.63 and 6.65 nm, depending on the boron chemical state. The wavelength of the maximum reflectance of the LaN∕B4C multilayer system is confirmed experimentally. Calculations of the wavelength-integrated reflectance for perfect ten-multilayer-mirror stacks show that a B-based optical column can be optimized for a wavelength larger than 6.65 nm

    Wavelength selection for multilayer coatings for the lithography generation beyond EUVL

    Get PDF
    The spectral properties of LaN/B and LaN/B4C multilayer mirrors have been investigated in the 6.5-6.9 nm wavelength range, based on measured B and B4C optical constants. We show that the wavelength of optimal single mirror reflectance for boron based optics is between 6.63 and 6.65 nm, depending on the boron chemical state. The wavelength of the maximum reflectance of the LaN/B4C multilayer system is confirmed experimentally. Calculations of the wavelengthintegrated reflectance for ideal 10-multilayer-mirror stacks show that a B-based optical column can be optimized for a wavelength larger than 6.65 nm
    corecore