58 research outputs found

    Using graph transformation algorithms to generate natural language equivalents of icons expressing medical concepts

    Full text link
    A graphical language addresses the need to communicate medical information in a synthetic way. Medical concepts are expressed by icons conveying fast visual information about patients' current state or about the known effects of drugs. In order to increase the visual language's acceptance and usability, a natural language generation interface is currently developed. In this context, this paper describes the use of an informatics method ---graph transformation--- to prepare data consisting of concepts in an OWL-DL ontology for use in a natural language generation component. The OWL concept may be considered as a star-shaped graph with a central node. The method transforms it into a graph representing the deep semantic structure of a natural language phrase. This work may be of future use in other contexts where ontology concepts have to be mapped to half-formalized natural language expressions.Comment: Presented at the TSD 2014 conference: Text, Speech and Dialogue, 17th international conference. Brno, Czech Republic, September 8-12, 2014. 10 pages, 7 figure

    Broadening the Scope of Nanopublications

    Full text link
    In this paper, we present an approach for extending the existing concept of nanopublications --- tiny entities of scientific results in RDF representation --- to broaden their application range. The proposed extension uses English sentences to represent informal and underspecified scientific claims. These sentences follow a syntactic and semantic scheme that we call AIDA (Atomic, Independent, Declarative, Absolute), which provides a uniform and succinct representation of scientific assertions. Such AIDA nanopublications are compatible with the existing nanopublication concept and enjoy most of its advantages such as information sharing, interlinking of scientific findings, and detailed attribution, while being more flexible and applicable to a much wider range of scientific results. We show that users are able to create AIDA sentences for given scientific results quickly and at high quality, and that it is feasible to automatically extract and interlink AIDA nanopublications from existing unstructured data sources. To demonstrate our approach, a web-based interface is introduced, which also exemplifies the use of nanopublications for non-scientific content, including meta-nanopublications that describe other nanopublications.Comment: To appear in the Proceedings of the 10th Extended Semantic Web Conference (ESWC 2013

    Applications of the ACGT Master Ontology on Cancer

    Get PDF
    In this paper we present applications of the ACGT Master Ontology (MO) which is a new terminology resource for a transnational network providing data exchange in oncology, emphasizing the integration of both clinical and molecular data. The development of a new ontology was necessary due to problems with existing biomedical ontologies in oncology. The ACGT MO is a test case for the application of best practices in ontology development. This paper provides an overview of the application of the ontology within the ACGT project thus far

    Controlled English for Reasoning on the Semantic Web

    Full text link
    The existing Semantic Web languages have a very technical focus and fail to provide good usability for users with no background in formal methods. We argue that controlled natural languages like Attempto Controlled English (ACE) can solve this problem. ACE is a subset of English that can be translated into various logic based languages, among them the Semantic Web standards OWL and SWRL. ACE is accompanied by a set of tools, namely the parser APE, the Attempto Reasoner RACE, the ACE View ontology and rule editor, the semantic wiki AceWiki, and the Protune policy framework. The applications cover a wide range of Semantic Web scenarios, which shows how broadly ACE can be applied. We conclude that controlled natural languages can make the Semantic Web better understandable and more usable

    Physiological and behavioral benefits for people and horses during guided interactions at an assisted living residence

    No full text
    Assisted living is a fast-growing living option for seniors who require residence-based activities for maintaining mental and physical health. Guided equine interactions may benefit seniors, so an on-site equine program was started at Hacienda at the River senior living community. For research purposes, twenty-four residents and associates, aged fifty-five or over, consented to physiological measurements before, during and after four guided sessions of stroking one of three horses for 10 min over 4–6 weeks. Heart rate variability (HRV) was measured simultaneously in humans and horses during interactions. We hypothesized that human heart rate (HR) and HRV would increase during stroking and HRV power would shift toward the very low frequency (VLF) range common in horses, indicative of healthy function. During stroking, human HR increased (p < 0.05) but HRV (SDRR) and %VLF of HRV power did not change. Diastolic blood pressure (DBP), an exploratory measure, significantly increased after stroking, consistent with arousal. Two horses showed no significant changes in HR or HRV, but one relaxed. Sixteen horse–human pairs demonstrated synchronized HRV peak frequencies during sessions, suggestive of social connection. Participants used more positive than negative words describing their experience during exit interviews (p < 0.05). These data show that horses animate seniors without causing emotional stress and provide opportunities for social bonding. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore