110 research outputs found

    Peatland hydrology and carbon release: why small-scale process matters

    Get PDF
    Peatlands cover over 400 million hectares of the Earth's surface and store between one-third and one-half of the world's soil carbon pool. The long-term ability of peatlands to absorb carbon dioxide from the atmosphere means that they play a major role in moderating global climate. Peatlands can also either attenuate or accentuate flooding. Changing climate or management can alter peatland hydrological processes and pathways for water movement across and below the peat surface. It is the movement of water in peats that drives carbon storage and flux. These small-scale processes can have global impacts through exacerbated terrestrial carbon release. This paper will describe advances in understanding environmental processes operating in peatlands. Recent (and future) advances in high-resolution topographic data collection and hydrological modelling provide an insight into the spatial impacts of land management and climate change in peatlands. Nevertheless, there are still some major challenges for future research. These include the problem that impacts of disturbance in peat can be irreversible, at least on human time-scales. This has implications for the perceived success and understanding of peatland restoration strategies. In some circumstances, peatland restoration may lead to exacerbated carbon loss. This will also be important if we decide to start to create peatlands in order to counter the threat from enhanced atmospheric carbon

    Synthesizing attractors of Hindmarsh-Rose neuronal systems

    Full text link
    In this paper a periodic parameter switching scheme is applied to the Hindmarsh-Rose neuronal system to synthesize certain attractors. Results show numerically, via computer graphic simulations, that the obtained synthesized attractor belongs to the class of all admissible attractors for the Hindmarsh-Rose neuronal system and matches the averaged attractor obtained with the control parameter replaced with the averaged switched parameter values. This feature allows us to imagine that living beings are able to maintain vital behavior while the control parameter switches so that their dynamical behavior is suitable for the given environment.Comment: published in Nonlinear Dynamic

    Itinerant Ferromagnetism in the Periodic Anderson Model

    Full text link
    We introduce a novel mechanism for itinerant ferromagnetism, based on a simple two-band model. The model includes an uncorrelated and dispersive band hybridized with a second band which is narrow and correlated. The simplest Hamiltonian containing these ingredients is the Periodic Anderson Model (PAM). Using quantum Monte Carlo and analytical methods, we show that the PAM and an extension of it contain the new mechanism and exhibit a non-saturated ferromagnetic ground state in the intermediate valence regime. We propose that the mechanism, which does not assume an intra atomic Hund's coupling, is present in both the iron group and in some f electron compounds like Ce(Rh_{1-x} Ru_x)_3 B_2, La_x Ce_{1-x} Rh_3 B_2 and the uranium monochalcogenides US, USe, and UTe
    corecore