27 research outputs found

    Charge Stripe in an Antiferromagnet: 1d Band of Composite Excitations

    Full text link
    With the help of analytical and numerical studies of the tt-JzJ_z model we argue that the charge stripe in an antiferromagnetic insulator should be understood as a system of holon-spin-polaron excitations condensed at the self-induced antiphase domain wall. The structure of such a charge excitation is studied in detail with numerical and analytical results for various quantities being in a very close agreement. An analytical picture of these excitations occupying an effective 1D stripe band is also in a very good accord with numerical data. The emerging concept advocates the primary role of the kinetic energy in favoring the stripe as a ground state. A comparative analysis suggests the effect of pairing and collective meandering on the energetics of the stripe formation to be secondary.Comment: 5 pages, 3 figures, proceedings of SCES'01 conference, Ann Arbor, 2001, to be published in Physica

    A numerical and analytical study of two holes doped into the 2D t--J model

    Full text link
    Exact diagonalization numerical results are presented for a 32-site square cluster, with two holes propagating in an antiferromagnetic background described by the t-J model. We characterize the wave function of the lowest energy bound state found in this calculation, which has d_{x^2-y^2} symmetry. Analytical work is presented, based on a Lang-Firsov-type canonical transformation derived quasiparticle Hamiltonian, that accurately agrees with numerically determined values for the electron momentum distribution function and the pair correlation function. We interpret this agreement as strong support for the validity of this description of the hole quasiparticles.Comment: 3 pages, REVTeX, to appear in the proceedings of the Fifth International Conference on Spectroscopies in Novel Superconductors, September 14-18, 1997, Cape Cod, Massachusett

    Low-energy limit of the three-band model for electrons in a CuO2_{2} plane

    Full text link
    The three-band model with the O-O direct hopping near to unit filling is considered. We present the general procedure of reduction of this model to the low-energy limit. At unit filling the three-band model in the charge-transfer limit is reduced to the Heisenberg model and we calculate the superexchange constant. For the case of the small electron doping the three-band model is reduced to the tJt-J model and we calculate electron hopping parameters at the nearest and next neighbors. We derive the structure of corrections to the tJt-J model and calculate their magnitude. The values of the hopping parameters for electron- and hole-doping differ approximately at 40 %.Comment: 10 pp. (LATEX

    On the Nagaoka polaron in the t-J model

    Full text link
    It is widely believed that a single hole in the two (or three) dimensional t-J model, for sufficiently small exchange coupling J, creates a ferromagnetic bubble around itself, a finite J remnant of the ferromagnetic groundstate at J=0 (the infinite U Hubbard model), first established by Nagaoka. We investigate this phenomenon in two dimensions using the density matrix renormalization group, for system sizes up to 9x9. We find that the polaron forms for J/t<0.02-0.03 (a somewhat larger value than estimated previously). Although finite-size effects appear large, our data seems consistent with the expected 1.1(J/t)^{-1/4} variation of polarion radius. We also test the Brinkman-Rice model of non-retracing paths in a Neel background, showing that it is quite accurate, at larger J. Results are also presented in the case where the Heisenberg interaction is dropped (the t-J^z model). Finally we discuss a "dressed polaron" picture in which the hole propagates freely inside a finite region but makes only self-retracing excursions outside this region.Comment: 7 pages, 9 encapsulated figure

    Effects of domain walls on hole motion in the two-dimensional t-J model at finite temperature

    Full text link
    The t-J model on the square lattice, close to the t-J_z limit, is studied by quantum Monte Carlo techniques at finite temperature and in the underdoped regime. A variant of the Hoshen-Koppelman algorithm was implemented to identify the antiferromagnetic domains on each Trotter slice. The results show that the model presents at high enough temperature finite antiferromagnetic (AF) domains which collapse at lower temperatures into a single ordered AF state. While there are domains, holes would tend to preferentially move along the domain walls. In this case, there are indications of hole pairing starting at a relatively high temperature. At lower temperatures, when the whole system becomes essentially fully AF ordered, at least in finite clusters, holes would likely tend to move within phase separated regions. The crossover between both states moves down in temperature as doping increases and/or as the off-diagonal exchange increases. The possibility of hole motion along AF domain walls at zero temperature in the fully isotropic t-J is discussed.Comment: final version, to appear in Physical Review

    Holes in the t-J_z model: a thorough study

    Full text link
    The t-J_z model is the strongly anisotropic limit of the t-J model which captures some general properties of the doped antiferromagnets (AF). The absence of spin fluctuations simplifies the analytical treatment of hole motion in an AF background and allows us to calculate the single- and two-hole spectra with high accuracy using regular diagram technique combined with real-space approach. At the same time, numerical studies of this model via exact diagonalization (ED) on small clusters show negligible finite size effects for a number of quantities, thus allowing a direct comparison between analytical and numerical results. Both approaches demonstrate that the holes have tendency to pair in the p- and d-wave channels at realistic values of t/J. The interactions leading to pairing and effects selecting p and d waves are thoroughly investigated. The role of transverse spin fluctuations is considered using perturbation theory. Based on the results of the present study, we discuss the pairing problem in the realistic t-J-like model. Possible implications for preformed pairs formation and phase separation are drawn.Comment: 21 pages, 15 figure

    Quantum impurity in an antiferromagnet: non-linear sigma model theory

    Full text link
    We present a new formulation of the theory of an arbitrary quantum impurity in an antiferromagnet, using the O(3) non-linear sigma model. We obtain the low temperature expansion for the impurity spin susceptibilities of antiferromagnets with magnetic long-range order in the ground state. We also consider the bulk quantum phase transition in d=2 to the gapped paramagnet (d is the spatial dimension): the impurity is described solely by a topological Berry phase term which is an exactly marginal perturbation to the critical theory. The physical properties of the quantum impurity near criticality are obtained by an expansion in (d-1).Comment: 14 pages, 7 figures; (v2) added re

    Magnetic field effects and magnetic anisotropy in lightly doped La_{2-x}Sr_xCuO_4

    Full text link
    The effects of the application of a magnetic field on the diagonal stripe spin-glass phase is studied in lightly doped La_{2-x}Sr_xCuO_4 (x=0.014 and 0.024). With increasing magnetic field, the magnetic elastic intensity at the diagonal incommensurate (DIC) positions (1,\pm\epsilon,0) decreases as opposed to the increase seen in superconducting samples. This diminution in intensity with increasing magnetic field originates from a spin reorientation transition, which is driven by the antisymmetric exchange term in the spin Hamiltonian. On the other hand, the transition temperature, the incommensurability, and the peak width of the diagonal incommensurate correlations are not changed with magnetic field. This result suggests that the magnetic correlations are determined primarily by the charge disproportionation and that the geometry of the diagonal incommensurate magnetism is also determined by effects, that is, stripe formation which are not purely magnetic in origin. The Dzyaloshinskii-Moriya antisymmetric exchange is nevertheless important in determining the local spin structure in the DIC stripe phase.Comment: 7 pages, 5 figures, to appear in Phys. Rev.

    Bosonic Excitations in Random Media

    Full text link
    We consider classical normal modes and non-interacting bosonic excitations in disordered systems. We emphasise generic aspects of such problems and parallels with disordered, non-interacting systems of fermions, and discuss in particular the relevance for bosonic excitations of symmetry classes known in the fermionic context. We also stress important differences between bosonic and fermionic problems. One of these follows from the fact that ground state stability of a system requires all bosonic excitation energy levels to be positive, while stability in systems of non-interacting fermions is ensured by the exclusion principle, whatever the single-particle energies. As a consequence, simple models of uncorrelated disorder are less useful for bosonic systems than for fermionic ones, and it is generally important to study the excitation spectrum in conjunction with the problem of constructing a disorder-dependent ground state: we show how a mapping to an operator with chiral symmetry provides a useful tool for doing this. A second difference involves the distinction for bosonic systems between excitations which are Goldstone modes and those which are not. In the case of Goldstone modes we review established results illustrating the fact that disorder decouples from excitations in the low frequency limit, above a critical dimension dcd_c, which in different circumstances takes the values dc=2d_c=2 and dc=0d_c=0. For bosonic excitations which are not Goldstone modes, we argue that an excitation density varying with frequency as ρ(ω)ω4\rho(\omega) \propto \omega^4 is a universal feature in systems with ground states that depend on the disorder realisation. We illustrate our conclusions with extensive analytical and some numerical calculations for a variety of models in one dimension

    Electron momentum distribution in underdoped cuprates

    Full text link
    We investigate the electron momentum distribution function (EMD) in a weakly doped two-dimensional quantum antiferromagnet (AFM) as described by the t-J model. Our analytical results for a single hole in an AFM based on the self-consistent Born approximation (SCBA) indicate an anomalous momentum dependence of EMD showing 'hole pockets' coexisting with a signature of an emerging large Fermi surface. The position of the incipient Fermi surface and the structure of the EMD is determined by the momentum of the ground state. Our analysis shows that this result remains robust in the presence of next-nearest neighbor hopping terms in the model. Exact diagonalization results for small clusters are with the SCBA reproduced quantitatively.Comment: 5 pages, submitted to PR
    corecore