20 research outputs found

    Thermodynamic properties of ferromagnetic mixed-spin chain systems

    Full text link
    Using a combination of high-temperature series expansion, exact diagonalization and quantum Monte Carlo, we perform a complementary analysis of the thermodynamic properties of quasi-one-dimensional mixed-spin systems with alternating magnetic moments. In addition to explicit series expansions for small spin quantum numbers, we present an expansion that allows a direct evaluation of the series coefficients as a function of spin quantum numbers. Due to the presence of excitations of both acoustic and optical nature, the specific heat of a mixed-spin chain displays a double-peak-like structure, which is more pronounced for ferromagnetic than for antiferromagnetic intra-chain exchange. We link these results to an analytically solvable half-classical limit. Finally, we extend our series expansion to incorporate the single-ion anisotropies relevant for the molecular mixed-spin ferromagnetic chain material MnNi(NO2_{2})4_{4}(ethylenediamine)2_{2}, with alternating spins of magnitude 5/2 and 1. Including a weak inter-chain coupling, we show that the observed susceptibility allows for an excellent fit, and the extraction of microscopic exchange parameters.Comment: 8 pages including 7 figures, submitted to Phys. Rev. B; series extended to 29th. QMC adde

    DDT - przekleństwo czy błogosławieństwo XX wieku?

    No full text

    Endocrine Disrupters: A Review of Some Sources, Effects, and Mechanisms of Actions on Behavior and Neuroendocrine Systems

    No full text
    Some environmental contaminants interact with hormones and may exert adverse consequences due to their actions as endocrine disrupting chemicals (EDCs). Exposure in people is typically due to contamination of the food chain, inhalation of contaminated house dust, or occupational exposure. EDCs include pesticides and herbicides (such as diphenyl-dichloro-trichloroethane, DDT, or its metabolites), methoxychlor, biocides, heat stabilizers and chemical catalysts (such as tributyltin, TBT), plastic contaminants (e.g. bisphenol A, BPA), pharmaceuticals (i.e. diethylstilbestrol, DES; 17alpha-ethynilestradiol, EE2), or dietary components (such as phytoestrogens). The goal of this review is to address sources, effects and actions of EDCs, with an emphasis on topics discussed at the International Congress on Steroids and the Nervous System. EDCs may alter reproductively-relevant or non-reproductive, sexually-dimorphic behaviors. In addition, EDCs may have significant effects on neurodevelopmental processes, influencing morphology of sexually-dimorphic cerebral circuits. Exposure to EDCs is more dangerous if it occurs during specific "critical periods" of life, such as intrauterine, perinatal, juvenile or puberty periods, when organisms are more sensitive to hormonal disruption, than in other periods. However, exposure to EDCs in adulthood also can alter physiology. Several EDCs are xenoestrogens, may alter serum lipid concentrations, or metabolism enzymes that are necessary for converting cholesterol to steroid hormones, ultimately altering production of E(2) and/or other steroids. Finally, many EDCs may have actions via, or independent of, classic actions at cognate steroid receptors. EDCs may have effects through numerous other substrates, such as the aryl hydrocarbon receptor (AhR), the peroxisome proliferator-activated receptor (PPAR) and retinoid X receptor (RXR), signal transduction pathways, calcium influx, and/or neurotransmitter receptors. Thus, EDCs, from varied sources, may have organizational effects during development, and/or activational effects in adulthood, that influence sexually-dimorphic, reproductively-relevant processes or other functions, by mimicking, antagonizing, or altering steroidal actions

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    No full text
    International audienceGravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    No full text
    International audienceGravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects
    corecore