7 research outputs found

    Homogenization of low-cost control problems on perforated domains

    Get PDF
    AbstractThe aim of this paper is to study the asymptotic behaviour of some low-cost control problems in periodically perforated domains with Neumann condition on the boundary of the holes. The optimal control problems considered here are governed by a second order elliptic boundary value problem with oscillating coefficients. It is assumed that the cost of the control is of the same order as that describing the oscillations of the coefficients. The asymptotic analysis of small cost problem is more delicate and need the H-convergence result for weak data. In this connection, an H-convergence result for weak data under some hypotheses is also proved

    Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions

    Full text link
    A microscopic heterogeneous system under random influence is considered. The randomness enters the system at physical boundary of small scale obstacles as well as at the interior of the physical medium. This system is modeled by a stochastic partial differential equation defined on a domain perforated with small holes (obstacles or heterogeneities), together with random dynamical boundary conditions on the boundaries of these small holes. A homogenized macroscopic model for this microscopic heterogeneous stochastic system is derived. This homogenized effective model is a new stochastic partial differential equation defined on a unified domain without small holes, with static boundary condition only. In fact, the random dynamical boundary conditions are homogenized out, but the impact of random forces on the small holes' boundaries is quantified as an extra stochastic term in the homogenized stochastic partial differential equation. Moreover, the validity of the homogenized model is justified by showing that the solutions of the microscopic model converge to those of the effective macroscopic model in probability distribution, as the size of small holes diminishes to zero.Comment: Communications in Mathematical Physics, to appear, 200

    Partial Exact Controllability of a Nonlinear System

    Full text link
    corecore