1,007 research outputs found

    Resumming the color-octet contribution to e+ e- -> J/psi + X

    Full text link
    Recent observations of the spectrum of J/psi produced in e+ e- collisions at the Upsilon(4S) resonance are in conflict with fixed-order calculations using the Non-Relativistic QCD (NRQCD) effective field theory. One problem is that leading order color-octet mechanisms predict an enhancement of the cross section for J/psi with maximal energy that is not observed in the data. However, in this region of phase space large perturbative corrections (Sudakov logarithms) as well as enhanced nonperturbative effects are important. In this paper we use the newly developed Soft-Collinear Effective Theory (SCET) to systematically include these effects. We find that these corrections significantly broaden the color-octet contribution to the J/psi spectrum. Our calculation employs a one-stage renormalization group evolution rather than the two-stage evolution used in previous SCET calculations. We give a simple argument for why the two methods yield identical results to lowest order in the SCET power counting.Comment: 27 pages, 7 figure

    Generating droplets in two-dimensional Ising spin glasses by using matching algorithms

    Full text link
    We study the behavior of droplets for two dimensional Ising spin glasses with Gaussian interactions. We use an exact matching algorithm which enables study of systems with linear dimension L up to 240, which is larger than is possible with other approaches. But the method only allows certain classes of droplets to be generated. We study single-bond, cross and a category of fixed volume droplets as well as first excitations. By comparison with similar or equivalent droplets generated in previous works, the advantages but also the limitations of this approach are revealed. In particular we have studied the scaling behavior of the droplet energies and droplet sizes. In most cases, a crossover of the data can be observed such that for large sizes the behavior is compatible with the one-exponent scenario of the droplet theory. Only for the case of first excitations, no clear conclusion can be reached, probably because even with the matching approach the accessible system sizes are still too small.Comment: 11 pages, 16 figures, revte

    Fragmentation Functions for Lepton Pairs

    Get PDF
    We calculate the fragmentation function for a light quark to decay into a lepton pair to leading order in the QCD coupling constant. In the formal definition of the fragmentation function, a QED phase must be included in the eikonal factor to guarantee QED gauge invariance. We find that the longitudinal polarization fraction is a decreasing function of the factorization scale, in accord with the intuitive expectation that the virtual photon should behave more and more like a real photon as the transverse momomentum of the fragmenting quark increases.Comment: 13 pages, 4 figures, normalization corrected, text abbreviate

    Study of heterogeneous nucleation of eutectic Si in high-purity Al-Si alloys with Sr addition

    Get PDF
    The official published version can be accessed from the link below - Copyright @ 2010 The Minerals, Metals & Materials Society and ASM InternationalAl-5 wt pct Si master-alloys with controlled Sr and/or P addition/s were produced using super purity Al 99.99 wt pct and Si 99.999 wt pct materials in an arc melter. The master-alloy was melt-spun resulting in the production of thin ribbons. The Al matrix of the ribbons contained entrained Al-Si eutectic droplets that were subsequently investigated. Differential scanning calorimetry, thermodynamic calculations, and transmission electron microscopy techniques were employed to examine the effect of the Sr and P additions on eutectic undercoolings and nucleation phenomenon. Results indicate that, unlike P, Sr does not promote nucleation. Increasing Sr additions depressed the eutectic nucleation temperature. This may be a result of the formation of a Sr phase that could consume or detrimentally affect potent AlP nucleation sites.This work is financially supported by the Higher Education Commission of Pakistan and managerially supported from the OAD

    Feeding and Distribution of Porosity in Cast Al-Si Alloys as Function of Alloy Composition and Modification

    Get PDF
    Unmodified, Na-modified, and Sr-modified castings of Al-7 pct Si and Al-12.5 pct Si alloys were cast in molds in which it was possible to create different cooling conditions. It is shown how solidification influences the distribution of porosity at the surface and the center of the castings as a function of modification and Si content in sand- and chill-cast samples. Eutectic modification, Si content, and cooling conditions have a great impact on the distribution of porosity. Unmodified and Na-modified castings are more easily fed with porosity tending to congregate near the centerline of the casting, while Sr-modified castings solidify in a mushy manner that creates a more homogeneous distribution of porosity in the casting. The amount of porosity was highest in the Sr-modified alloys, lower in the Na-modified alloys, and lowest in the unmodified alloys. The size of the porosity-free layer and the effectiveness of the feeders were greater in the castings made with the steel chills due to the increased thermal gradients and consequent increase in the directionality of solidification

    J/\psi production through resolved photon processes at e+ e- colliders

    Full text link
    We consider J/psi photoproduction in e+ e- as well as linear photon colliders. We find that the process is dominated by the resolved photon channel. Both the once-resolved and twice-resolved cross-sections are sensitive to (different combinations of) the colour octet matrix elements. Hence, this may be a good testing ground for colour octet contributions in NRQCD. On the other hand, the once-resolved J/psi production cross-section, particularly in a linear photon collider, is sensitive to the gluon content of the photon. Hence these cross-sections can be used to determine the parton distribution functions, especially the gluon distribution, in a photon, if the colour octet matrix elements are known.Comment: Added a figure on parametrisation dependence of photonic parton densities and some reference

    Power counting and effective field theory for charmonium

    Get PDF
    We hypothesize that the correct power counting for charmonia is in the parameter Lambda_QCD/m_c, but is not based purely on dimensional analysis (as is HQET). This power counting leads to predictions which differ from those resulting from the usual velocity power counting rules of NRQCD. In particular, we show that while Lambda_QCD/m_c power counting preserves the empirically verified predictions of spin symmetry in decays, it also leads to new predictions which include: A hierarchy between spin singlet and triplet octet matrix elements in the J/psi system. A quenching of the net polarization in production at large transverse momentum. No end point enhancement in radiative decays. We discuss explicit tests which can differentiate between the traditional and new theories of NRQCD.Comment: 18 pages, 1 figure Replaced plot of the psi polarization parameter alpha as a function of transverse momentum. Alpha is now closer to zero for large transverse moment

    Complete Classification of the String-like Solutions of the Gravitating Abelian Higgs Model

    Get PDF
    The static cylindrically symmetric solutions of the gravitating Abelian Higgs model form a two parameter family. In this paper we give a complete classification of the string-like solutions of this system. We show that the parameter plane is composed of two different regions with the following characteristics: One region contains the standard asymptotically conic cosmic string solutions together with a second kind of solutions with Melvin-like asymptotic behavior. The other region contains two types of solutions with bounded radial extension. The border between the two regions is the curve of maximal angular deficit of 2π2\pi.Comment: 12 pages, 4 figure

    On the thin-shell limit of branes in the presence of Gauss-Bonnet interactions

    Full text link
    In this paper we study thick-shell braneworld models in the presence of a Gauss-Bonnet term. We discuss the peculiarities of the attainment of the thin-shell limit in this case and compare them with the same situation in Einstein gravity. We describe the two simplest families of thick-brane models (parametrized by the shell thickness) one can think of. In the thin-shell limit, one family is characterized by the constancy of its internal density profile (a simple structure for the matter sector) and the other by the constancy of its internal curvature scalar (a simple structure for the geometric sector). We find that these two families are actually equivalent in Einstein gravity and that the presence of the Gauss-Bonnet term breaks this equivalence. In the second case, a shell will always keep some non-trivial internal structure, either on the matter or on the geometric sectors, even in the thin-shell limit.Comment: 17 pages, 2 figures, RevTeX 4. Revised version accepted for publication in Physical Review

    Associated Production of Heavy Quarkonia and Electroweak Bosons at Present and Future Colliders

    Get PDF
    We investigate the associated production of heavy quarkonia, with angular-momentum quantum numbers ^{2S+1}L_J = ^1S_0, ^3S_1, ^1P_1, ^3P_J (J = 0, 1, 2), and photons, Z bosons, and W bosons in photon-photon, photon-hadron, and hadron-hadron collisions within the factorization formalism of nonrelativistic quantum chromodynamics providing all contributing partonic cross sections in analytic form. In the case of photoproduction, we also include the resolved-photon contributions. We present numerical results for the processes involving J/psi and chi_{cJ} mesons appropriate for the Fermilab Tevatron, CERN LHC, DESY TESLA, operated in the e^+ e^- and gamma gamma modes, and DESY THERA.Comment: 41 pages (Latex), 10 figures (Postscript
    corecore