23 research outputs found

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    The Diabetic Vasculature: Physiological Mechanisms Of Dysfunction And Influence Of Aerobic Exercise Training In Animal Models

    No full text
    Diabetes mellitus (DM) is associated with a number of complications of which chronic vascular complications are undoubtedly the most complex and significant consequence. With a significant impact on health care, 50-80% of people with diabetes die of cardiovascular disease (including coronary artery disease, stroke, peripheral vascular disease and other vascular disease), making it the major cause of morbidity and mortality in diabetic patients. A healthy lifestyle is essential in the management of DM, especially the inclusion of aerobic exercise, which has been shown effective in reducing the deleterious effects in vasculature. Interest in exercise studies has increased significantly with promising results that demonstrate a future for investigation. Considering the importance of this emerging field, the aim of this mini-review is to summarize and integrate animal studies investigating physiological mechanisms of vascular dysfunction and remodeling in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) and how these are influenced by chronic aerobic exercise training. © 2014 Elsevier Inc.10211913SDG16840035; AHA; American Heart AssociationAbebe, W., Macleod, K.M., Enhanced arterial contractility to noradrenaline in diabetic rats is associated with increased phosphoinositide metabolism (1991) Can J Physiol Pharmacol, 69, pp. 355-361Abebe, W., Macleod, K.M., Influence of diabetes on noraepinephrine-induced inositol 1,4,5-trisphosphate levels in rat aorta (1991) Life Sci, 49, pp. 85-PL90Agrawal, D.K., McNeill, J.H., Vascular responses to agonists in rat mesenteric artery from diabetic rats (1987) Can J Physiol Pharmacol, 65, pp. 1484-1490Standards of medical care for patients with diabetes mellitus (1997) Diabetes Care, 20, pp. 3-S13. , American Diabetes AssociationDiagnosis and classification of diabetes mellitus (2005) Diabetes Care, 28, pp. 37-S42. , American Diabetes AssociationArozal, W., Watanabe, K., Veeraveedu, P.T., Ma, M., Thandavarayan, R.A., Suzuki, K., Effects of angiotensin receptor bloker on oxidative stress and cardio-renal function in streptozotocin-induced diabetic rats (2009) Biol Pharm Bull, 32, pp. 1411-1416Avogaro, A., De Kreutzenberg, S.V., Fadini, G., Endothelial dysfunction: Causes and consequences in patients with diabetes mellitus (2008) Diabetes Res Clin Pract, 15, pp. 94-S101. , 10.1016/j.diabres.2008.09.021Baluchnejadmojarad, T., Roghani, M., Chronic administration of genistein improves aortic reactivity of streptozotocin-diabetic rats: Mode of action (2008) Vascul Pharmacol, 49, pp. 1-5. , 10.1016/j.vph.2008.03.002Bender, S.B., Klabunde, R.E., Altered role of smooth muscle endothelin receptors in coronary endothelin-1 and α1-adrenoceptor-mediated vasoconstriction in type 2 diabetes (2007) Am J Physiol Heart Circ Physiol, 293, pp. 2281-H2288. , 10.1152/ajpheart.00566.2007Bianchi, M.L.P., Antunes, L.M.G., Free radical and the main dietary antioxidants (1999) Rev Nutr, 12, pp. 123-130Boor, P., Celec, P., Behuliak, M., Grancic, P., Kebis, A., Kukan, M., Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucher rats (2009) Metabolism, 58, pp. 1669-1677. , 10.1016/j.metabol.2009.05.025Booth, F.W., Laye, M.J., Spangenburg, E., (2010) Gold Standards for Scientists Who Are Conducting Animal-based Exercise Studies, 108, pp. 219-221. , 10.1152/japplphysiol.00125.2009Brondum, E., Kold-Petersen, H., Nilsson, H., Flycbjerg, A., Aalkjaer, C., Increased contractility to noradrenaline and normal endothelial function in mesenteric small arteries from the Goto-kakizaki rat model of type 2 diabetes (2008) J Physiol Sci, 58, pp. 333-339. , 10.2170/physiolsci.RP010108Bruno, R.M., Ghiadoni, L., Vascular smooth muscle function: Defining the diabetic vascular phenotype (2013) Diabetologia, 56, pp. 2107-2109Bucala, R., Tracey, K.J., Cerami, A., Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes (1991) J Clin Invest, 87, pp. 432-438Bunker, A.K., Arce-Esquivel, A.A., Rector, R.S., Booth, F.W., Ibdah, J.A., Laughlin, M.H., Physical activity maintains aortic endothelium-dependent relaxation in the obese type 2 diabetic OLETF rat (2010) Am J Physiol Heart Circ Physiol, 298, pp. 889-H901. , 10.1152/ajpheart.01252.2009Cade, W.T., Diabetes-related microvascular and macrovascular diseases in the physical therapy setting (2008) Phys Ther, 88 (11), pp. 1322-1335Carr, C.L., Qi, Y., Davidson, B., Chadderdon, S., Jayaweera, A.R., Belcik, J.T., Dysregulated selectin expression and monocyte recruitment during ischemia-related vascular remodeling in diabetes mellitus (2011) Arterioscler Thromb Vasc Biol, 31, pp. 2526-2533. , 10.1161/ATVBAHA.111.230177Caspersen, C.J., Powell, K.E., Christenson, G.M., Physical activity, exercise and physical fitness: Definitions and distinctions for health-related research (1985) Public Health Rep, 100, pp. 126-131Celik, T., Iyisoy, A., Yuksel, U.C., Pediatric metabolic syndrome: A growing threat (2010) Int J Cardiol, 23, pp. 302-303. , 10.1016/j.ijcard.2008.11.143Chakraphan, D., Sridulyakul, P., Thipakorn, B., Bunnag, S., Hyxley, V.H., Patumraj, S., Attenuation of endothelial dysfunction by exercise training in STZ-induced diabetic rats (2005) Clin Hemorheol Microcirc, 32, pp. 217-226Chang, S.P., Chen, Y.H., Chang, W.C., Liu, I.M., Cheng, J.T., Increase of adiponectin receptor gene expression by physical exercise in soleus muscle of obese Zucker rats (2006) Eur J Appl Physiol, 97, pp. 189-195Chen, K.D., Li, Y.S., Kim, M., Li, S., Yuan, S., Chien, S., Mechanotransduction in response to shear stress. Roles of receptor tyrosine, kinases, integrins, and Shc (1999) J Biol Chem, 274, pp. 18393-18400Chien, S., Li, S., Shyy, Y.J., Effects of mechanical forces on signal transduction and gene expression in endothelial cells (1998) Hypertension, 31, pp. 162-169Chimen, M., Kennedy, A., Nirantharakumar, K., Pang, T.T., Andrews, P., Narendran, P., What are the health benefits of physical activity in type 1 diabetes mellitus? A literature review (2012) Diabetologia, 55, pp. 542-551. , 10.1007/s00125-011-2403-2Claudino, M.A., Delbin, M.A., Franco-Penteado, C.F., Priviero, F.B., De Nucci, G., Antunes, E., (2011) Life Sci, 88, pp. 272-277. , 10.1016/j.lfs.2010.11.018Colberg, S.R., Sigal, R.J., Fernhall, B., Regensteiner, J.G., Blissmer, B.J., Rubin, R.R., Exercise and type 2 diabetes: The American College of Sports Medicine and American Diabetes Association: Joint position statement (2010) Diabetes Care, 33, pp. 147-e167. , 10.2337/dc10-9990Nobrega, D., The subacute effects of exercise: Concept, characteristics, and clinical implications (2005) Exerc Sport Sci Rev, 33, pp. 84-87Danaei, G., Finucane, M.M., Lu, Y., Singh, G.M., Cowan, M.J., Paciorek, C.J., National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants (2011) Lancet, 378, pp. 31-40De Vriese, A.S., Verbeuren, T.J., Van D Voorde, J., Lameire, N.H., Vanhoutte, P.M., Endothelial dysfunction in diabetes (2000) Br J Pharmacol, 130, pp. 963-974Delbin, M.A., Davel, A.P., Couto, G.K., De Araújo, G.G., Rossoni, L.V., Antunes, E., Interaction between advanced glycation end products formation and vascular responses in femoral and coronary arteries from exercise rats (2012) PLoS One, 7, p. 53318. , 10.1371/journal.pone.0053318Dong, L., Zheng, Y.M., Van Riper, D., Rathore, R., Liu, Q.H., Singer, H.A., Functional and molecular evidence for impairment of calcium-activated potassium channels in type-1 diabetic cerebral artery smooth muscle cells (2008) J Cereb Blood Flow Metab, 28, pp. 377-386. , 10.1038/sj.jcbfm.9600536Dyson, M.C., Alloosh, M., Vuhcetich, J.P., Mokelke, E.A., Sturek, M., Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet (2006) Comp Med, 56, pp. 35-45Farmer, D.G., Kennedy, S., RAGE, vascular tone and vascular disease (2009) Pharmacol Ther, 124, pp. 185-194. , 10.1016/j.pharmthera.2009.06.013Fisher, A.B., Chien, S., Barakat, A.I., Nerem, R.M., Endothelial cellular response to altered shear stress (2001) Am J Physiol Lung Cell Mol Physiol, 281, pp. 529-L533Fiuza-Luces, C., Garatachea, N., Berger, N.A., Lucia, A., Exercise is the real polypill (2013) Physiology, 28, pp. 330-358. , 10.1152/physiol.00019.2013Forbes, J.M., Cooper, M.E., Mechanisms of diabetic complications (2013) Physiol Rev, 93 (1), pp. 137-188. , 10.1152/physrev.00045.2011Frey, R.S., Ushio-Fukai, M., Malik, A.B., PADPH oxidase-dependent signaling in endothelial cells: Role in physiology and pathophysiology (2009) Antioxid Redox Signal, 11, pp. 791-810. , 10.1089/ARS.2008.2220Friebee, J.C., Stepp, D.W., Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats (2001) Am J Physiol, 281, pp. 1304-H1311Garber, C.E., Blissmer, B., Deschenes, M.R., Franklin, B.A., Lamonte, M.J., Lee, I.M., American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise (2011) Med Sci Sports Exerc, 43, pp. 1334-1359Goldin, A., Beckman, J.A., Schmidt, A.M., Creager, M.A., Advanced glycaton end products: Sparking the development of diabetic vascular injury (2006) Circulation, 114, pp. 597-605. , 10.1161/CIRCULATIONAHA.106.621854Graier, W.F., Posch, K., Fleischhacker, E., Wascher, T.C., Kostner, G.M., Increased superoxide anion formation in endothelial cells during hyperglycemia: An adaptive response or initial step of vascular dysfunction? (1999) Diabetes Res Clin Pract, 45, pp. 153-160Haskell, W., Lee, I.M., Pate, R., Powell, K.E., Blair, S.N., Franklin, B.A., Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and American heart association (2007) Med Sci Sports Exerc, 39, pp. 1423-1434Hattori, Y., Kawasaki, H., Abe, K., Kanno, M., Superoxide dismutase recovers altered endothelium-dependent relaxation in diabetic rats aorta (1991) Am J Physiol, 261, pp. 1086-H1094Hayden, M.R., Sowers, J.R., Tyagi, S.C., The central role of vascular extracellular matrix and basement membrane remodeling in metabolic syndrome and type 2 diabetes: The matrix preloaded (2005) Cardiovasc Diabetol, 4, p. 9Heidarianpour, A., Hajizadeh, S., Khoshbaten, A., Niaki, A.G., Biqdili, M.R., Pourkhalili, K., Effects of chronic exercise on endothelial dysfunction and insulin signaling of cutaneous microvascular in streptozotocin-induced diabetic rats (2007) Eur J Cardiovasc Prev Rehabil, 14, pp. 746-752Kamata, K., Miyata, N., Kasuya, Y., Mechanisms of increased responses of the aorta to alpha-adrenoceptor agonists in streptozotocin-induced diabetic rats (1988) J Pharmacobiodyn, 11, pp. 707-713Kamper, M., Tsimpoukidi, O., Chatzigeorgiou, A., Lymberi, M., Kamper, E.F., The antioxidant effect of angiotensin II receptor bloker, losartan in streptozotocin-induced diabetic rats (2010) Transl Res, 156, pp. 26-36. , 10.1016/j.trsl.2010.05.004Katakam, P.V.G., Pollock, J.S., Pollock, D.M., Ujhelyi, M.R., Miller, A.W., Enchanced endothelin-1 response and receptor expression in small mesenteric arteries of insulin-resistant rats (2001) Am J Physiol Heart Circ Physiol, 208, pp. 522-H527Katz, P.S., Trask, A.J., Souza-Smith, F.M., Hutchinson, K.R., Galantowicz, M.L., Lord, K.C., Coronary arterioles in type 2 diabetic (db/db) mice undergo a distinct pattern of remodeling associated with decreased vessel stiffness (2011) Basic Res Cardiol, 106, pp. 1123-1134. , 10.1007/s00395-011-0201-0Khazaei, M., Moien-Afshari, Kieffer, T.J., Laher, I., Effect of exercise on augmented aortic vasoconstriction in the db/db mouse model of type-II diabetes (2008) Physiol Res, 57, pp. 847-856Kojda, G., Hambrecht, R., Molecular mechanisms of vascular adaptations to exercise. Physical activity as an affective antioxidant therapy? (2005) Cardiovasc Res, 67, pp. 187-197Korshunov, V.A., Schwartz, S.M., Berk, B.C., Vascular remodeling: Hemodynamic and biochemical mechanisms underlying Glagov's phenomenon (2007) Arterioscler Thromb Vasc Biol., 27, pp. 1722-1728Kwon, M.J., Kim, B., Lee, Y.S., Kim, T.Y., Role of superoxide dismutase 3 in skin inflammation (2012) J Dermatol Sci, 67, pp. 81-87. , 10.1016/j.jdermsci.2012.06.003Langenstroer, P., Pieper, G.M., Regulation of spontaneous EDRF releases in diabetic rat aorta by oxygen free radical (1992) Am J Physiol, 263, pp. 257-H265Lee, S., Park, Y., Dellsperger, K.C., Zhang, C., Exercise training improves endothelial function via adiponectin-dependent and independent pathways in type 2 diabetic mice (2011) Am J Physiol Heart Circ Physiol, 301, pp. 306-H314Leo, C.H., Joshi, A., Woodman, O.L., Short-term type 1 diabetes alters the mechanism of endothelium-dependent relaxation in the rat carotid artery (2010) Am J Physiol Heart Circ Physiol, 299, pp. 502-H511. , 10.1152/ajpheart.01197.2009Lu, T., Zhang, D.M., Wang, X.L., He, T., Wang, R.X., Chai, Q., Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus (2010) Circ Res, 106, pp. 1164-1173. , 10.1161/CIRCRESAHA.109.209767Madden, K.M., Lockhart, C., Cuff, D., Potter, T.F., Meneilly, G.S., Short-term aerobic exercise reduces arterial stiffness in older adults with type 2 diabetes, hypertension, and hypercholesterolemia (2009) Diabetes Care, 32, pp. 1531-1535. , 10.2337/dc09-0149Malakul, W., Thirawarapan, S., Suvitayavat, W., Woodman, O.L., Type 1 diabetes and hypercholesterolaemia reveal the contribution of endothelium-derived hyperpolarizing factor to endothelium-dependent relaxation of the rat aorta (2008) Clin Exp Pharmacol Physiol, 35, pp. 192-200. , 10.1111/j.1440-1681.2007.04811.xMaron, B.A., Michel, T., Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase (2012) Circ J, 76, pp. 2497-2512Martin, J.S., Padilla, J., Jenkins, N.T., Crissey, J.M., Bender, S.B., Rector, R.S., Functional adpatations in the skeletal muscle microvasculature to endurance and interval sprint training in the type 2 diabetic OLETF rat (2012) J Appl Physiol, 113, pp. 1223-1232. , 10.1152/japplphysiol.00823.2012Mattace-Raso, F.U., Van Der Cammen, T.J., Hofman, A., Van Popele, N.M., Bos, M.L., Schalekamp, M.A., Arterial stiffness and risk of coronary heart disease and stroke: The Rotterdam Study (2006) Circulation, 113, pp. 657-663Mayhan, W.G., Sun, H., Mayhan, J.F., Patel, K.P., Influence of exercise on dilatation of the basilar during diabetes mellitus (2004) J Appl Physiol, 96, pp. 1730-1737Mayhan, W.G., Arrick, D.M., Patel, K.P., Sun, H., Exercise training normalizes impaired NOS-dependent response of cerebral arterioles in type 1 diabetic rats (2011) Am J Physiol Heart Circ Physiol, 300, pp. 1013-H1020. , 10.1152/ajpheart.00873.2010McLeod, K.M., McNeil, J.H., The influence of chronic experimental diabetes on contractile responses of rat isolated blood vessels (1985) Can J Physiol Pharmacol, 63, pp. 52-57McNeilly, A.M., McClean, C., Murphy, M., McEneny, J., Trinick, T., Burke, G., Exercise training and impaired glucose tolerance in obese humans (2012) J Sports Sci, 30, pp. 725-732. , 10.1080/02640414.2012.671952Mezzetti, A., Cipollone, F., Cuccurullo, F., Oxidative stress and cardiovascular complications in diabetes: Isoprostanes as new markers on an old paradigm (2000) Cardiovasc Res, 18, pp. 475-488Minami, A., Isshimura, N., Harada, N., Sakamoto, S., Niwa, Y., Nakaya, Y., Exercise training improves acetylcholine-induced endothelium-dependent hyperpolarization in type 2 diabetic rats, otsuka long-evans tokushima fatty rats (2002) Atherosclerosis, 162, pp. 85-92Moien-Afshari, F., Ghosh, S., Elmi, S., Khazaei, M., Rahman, M.M., Sallam, N., Exercise restores coronary vascular function independent of myogenic tone or hyperglycemic status in db/db mice (2008) Am J Physiol Heart Circ Physiol, 295, pp. 1470-H1480Moien-Afshari, F., Ghosh, S., Elmi, S., Rahman, M.M., Sallam, N., Khazaei, M., Exercise restores endothelial function independently of weight loos or hyperglycaemic status in dbd/db mice (2008) Diabetologia, 51, pp. 1327-1337. , 10.1007/s00125-008-0996-xMokelke, E.A., Hu, Q., Song, M., Toro, L., Reddy, H.K., Sturek, M., Altered functional coupling of coronary K + channels in diabetic dyslipidemic pigs is prevented by exercise (2003) J Appl Physiol, 95, pp. 1179-1193Mokelke, E.A., Dietz, N.J., Eckman, D.M., Nelson, M.T., Sturek, M., Diabetic dyslipidemia and exercise affect coronary tone and differential regulation of conduit and microvessel K + current (2005) Am J Physiol Heart Circ Physiol, 288, pp. 1233-H1241Molnár, D., The prevalence of the metabolic syndrome and type 2 diabetes mellitus in children and adolescents (2004) Int J Obes Relat Metab Disord, 28, pp. 70-S74Mulvany, M.J., Baumbach, G.L., Aalkjaer, C., Heagerty, A.M., Korsgaard, N., Schiffrin, E.L., Vascular remodeling (1996) Hypertension, 28, pp. 505-506Murad, F., Nitric oxide and cyclic guanosine monophosphate signaling in the eye (2008) Can J Ophthalmol, 43, pp. 291-294. , 10.3129/i08-044Napoli, C., Ignarro, L.J., Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases (2009) Arch Pharm Res, 32, pp. 1103-1108. , 10.1007/s12272-009-1801-1Nelson, M.E., Rejeski, W.J., Blair, S.N., Duncan, P.W., Judge, J.O., King, A.C., Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and American Heart Association (2007) Med Sci Sports Exerc, 39, pp. 1435-1445Ouchi, N., Kihara, S., Funahashi, T., Matsuzawa, Y., Walsh, K., Obesity, adiponectin and vascular inflammatory disease (2003) Curr Opin Lipidol, 14, pp. 561-566Palmer, A.M., Thomas, C.R., Gopaul, N., Dhir, S., Anggard, E.E., Poston, L., Dietary antioxidant supplementation reduces lipid peroxidation but impairs vascular function in small mesenteric arteries of the streptozotocin-diabetic rat (1998) Diabetologia, 41, pp. 148-156Pannirselvam, M., Simon, V., Verma, S., Anderson, T., Triggle, C.R., Chronic oral supplementation with sepiapterin prevents endothelial dysfunction and oxidative stress in small mesenteric arteries from diabetic (db/db) mice (2003) Br J Pharmacol, 140, pp. 701-706Park, Y., Yang, J., Zhang, H., Chen, X., Zhang, C., Effect of PAR2 in regulation TNF-α and NAD(P)H oxidase in coronary arterioles in type 2 diabetic mice (2011) Basic Res Cardiol, 106, pp. 111-123. , 10.1007/s00395-010-0129-9Phillips, J.K., Vance, A.M., Raj, R.S., Mandala, M., Linder, E.A., Gokina, N.I., Impact of experimental diabetes on the maternal uterine vascular remodeling during rat pregnancy (2012) Reprod Sci, 19, pp. 322-331. , 10.1177/1933719111424435Pieper, G.M., Langenstroer, P., Siebeneich, W., Diabetic-indiced endothelial dysfunction in rat aorta: Role of hydroxyl radicals (1997) Cardiovasc Res, 34, pp. 145-156. , 10.1016/S0008-6363(96)00237-4Rees, D.A., Alcolado, J.C., Animal models of diabetes (2005) Diabet Med, 22, pp. 359-370Rojas, A., Romay, S., Gonzalez, D., Herrera, B., Delgado, R., Otero, K., Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products (2000) Circ Res, 86, pp. 50-E54. , 10.1161/01.RES.86.3.e50Rupérez, F.J., García-Martínez, D., Baena, B., Maeso, N., Cifuentes, A., Barbas, C., Evolution of oxidative stress parameters and response to oral vitamins e and C in streptozotocin-induced diabetic rats (2008) J Pharm Pharmacol, 60, pp. 871-878. , 10.1211/jpp.60.7.0008Russo, I., Del Mese, P., Doronzo, G., Matiello, L., Viretto, M., Bosia, A., Resistance to the nitric oxide/cyclic guanosine 5′-monophosphate/ protein kinase G pathway in vascular smooth muscle cells from the obsese Zucker rats, a classical animal model of insulin resistance: Role of oxidative stress (2008) Endocrinology, 149, pp. 1480-1489Sakamoto, S., Minami, K., Niwa, Y., Ohnaka, M., Nakaya, Y., Mizuno, A., Effect of exercise training and food restriction on endothelium-dependent relaxation in the otsuda long-evans tokushima fatty rat, model of spontaneous NIDDM (1998) Diabetes, 47, pp. 82-86Sandu, O., Song, K., Cai, W., Zheng, F., Uribarri, J., Vlassara, H., Insulin resistance and type 2 diabetes in high-fat-fed mice are linked to high glycotoxin intake (2005) Diabetes, 54, pp. 2314-2319Sasaki, N., Yamashita, T., Takaya, T., Shinohara, M., Shiraki, R., Takeda, M., Augmentation of vascular remodeling by uncoupled endothelial nitric oxide synthase in a mouse model of diabetes mellitus (2008) Arterioscler Thromb Vasc Biol, 28, pp. 1068-1076. , 10.1161/ATVBAHA.107.160754Schalkwijk, C.G., Stehouwer, C.D., Vascular complications in diabetes mellitus. The role of endothelial dysfunction (2005) Clin Sci, 109, pp. 143-159Schmidt, A.M., Stern, D.M., RAGE: A new target for the prevention and treatment of the vascular and inflammatory complications of diabetes (2000) Trends Endocrinol Metab, 11, pp. 368-375Shi, Y., Vanhoutte, P.M., Oxidative stress and COX cause hyper-responsiveness in vascular smooth muscle of the femoral artery from diabetic rats (2008) Br J Pharmacol, 154, pp. 639-651. , 10.1038/bjp.2008.110Shyy, J.Y., Chien, S., Role of integrins in endothelial mechanosensing of shear stress (2002) Circ Res, 91, pp. 769-775Souza-Smith, F.M., Katz, P.S., Trask, A.J., Stewart, Jr.J.A., Lord, K.C., Varner, K.J., Mesenteric resistance arteries in type 2 diabetic db/db mice undergo outward remodeling (2011) PLoS One, 6, p. 23337. , 10.1371/journal.pone.0023337Spinetti, G., Kraenkel, N., Emanueli, C., Madeddu, P., Diabetes and vessel wall remodelling: From mechanisti

    Primary role of angiotensin converting enzyme 2 in cardiac production of angiotensin-(1-7) in transgenic Ren-2 hypertensive rats

    No full text
    Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II (Ang II) to angiotensin-(1-7) [Ang-(1-7)] and this enzyme may serve as a key regulatory juncture in various tissues. Although the heart expresses ACE2, the extent that the enzyme participates in the cardiac processing of Ang II and Ang-(1-7) is equivocal. Therefore, we utilized the Langendorff preparation to characterize the ACE2 pathway in isolated hearts from male normotensive Sprague-Dawley [Tg((-))] and hypertensive [mRen2]27 [Tg((+))] rats. During a 60-minute recirculation period with 10 nM Ang II, the presence of Ang-(1-7) was assessed in the cardiac effluent. Ang-(1-7) generation from Ang II was similar in both the normal and hypertensive hearts (Tg((-)): 510 +/- 55 pM, n=20 versus Tg((+)): 497 +/- 63 pM, n=14) with peak levels occurring at 30 minutes after administration of the peptide. ACE2 inhibition (MLN-4760, 1microM) significantly reduced Ang-(1-7) production by 83% (57 +/- 19 pM, P < 0.01, n=7) in the Tg((+)) rats, whereas the inhibitor had no significant effect in the Tg((-)) rats (285 +/- 53 pM, P > 0.05, n=10). ACE2 activity was found in the effluent of perfused Tg((-)) and Tg((+)) hearts and it was highly associated with ACE2 protein expression (r =0.78). This study is the first demonstration for a direct role of ACE2 in the metabolism of cardiac Ang II in the hypertrophic heart of hypertensive rats. We conclude that predominant expression of cardiac ACE2 activity in the Tg((+)) may be a compensatory response to the extensive cardiac remodeling in this strain. Key words: angiotensin II, hypertension, isolated heart
    corecore