75 research outputs found

    Topological Andr\'e-Quillen homology for cellular commutative SS-algebras

    Full text link
    Topological Andr\'e-Quillen homology for commutative SS-algebras was introduced by Basterra following work of Kriz, and has been intensively studied by several authors. In this paper we discuss it as a homology theory on CW SS-algebras and apply it to obtain results on minimal atomic pp-local SS-algebras which generalise those of Baker and May for pp-local spectra and simply connected spaces. We exhibit some new examples of minimal atomic SS-algebras.Comment: Final revision, a version will appear in Abhandlungen aus dem Mathematischen Seminar der Universitaet Hambur

    De Novo Sequence and Copy Number Variants Are Strongly Associated with Tourette Disorder and Implicate Cell Polarity in Pathogenesis.

    Get PDF
    We previously established the contribution of de novo damaging sequence variants to Tourette disorder (TD) through whole-exome sequencing of 511 trios. Here, we sequence an additional 291 TD trios and analyze the combined set of 802 trios. We observe an overrepresentation of de novo damaging variants in simplex, but not multiplex, families; we identify a high-confidence TD risk gene, CELSR3 (cadherin EGF LAG seven-pass G-type receptor 3); we find that the genes mutated in TD patients are enriched for those related to cell polarity, suggesting a common pathway underlying pathobiology; and we confirm a statistically significant excess of de novo copy number variants in TD. Finally, we identify significant overlap of de novo sequence variants between TD and obsessive-compulsive disorder and de novo copy number variants between TD and autism spectrum disorder, consistent with shared genetic risk

    Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci

    Get PDF
    Analysis of de novo CNVs (dnCNVs) from the full Simons Simplex Collection (SSC) (N = 2,591 families) replicates prior findings of strong association with autism spectrum disorders (ASDs) and confirms six risk loci (1q21.1, 3q29, 7q11.23, 16p11.2, 15q11.2-13, and 22q11.2). The addition of published CNV data from the Autism Genome Project (AGP) and exome sequencing data from the SSC and the Autism Sequencing Consortium (ASC) shows that genes within small de novo deletions, but not within large dnCNVs, significantly overlap the high-effect risk genes identified by sequencing. Alternatively, large dnCNVs are found likely to contain multiple modest-effect risk genes. Overall, we find strong evidence that de novo mutations are associated with ASD apart from the risk for intellectual disability. Extending the transmission and de novo association test (TADA) to include small de novo deletions reveals 71 ASD risk loci, including 6 CNV regions (noted above) and 65 risk genes (FDR ≤ 0.1). Through analysis of de novo mutations in autism spectrum disorder (ASD), Sanders et al. find that small deletions, but not large deletions/duplications, contain one critical gene. Combining CNV and sequencing data, they identify 6 loci and 65 genes associated with ASD. © 2015 Elsevier Inc

    Fatigue Trends for Wind Blade Infusion Resins and Fabrics

    No full text
    corecore