550 research outputs found

    Concentration Dependence of Superconductivity and Order-Disorder Transition in the Hexagonal Rubidium Tungsten Bronze RbxWO3. Interfacial and bulk properties

    Full text link
    We revisited the problem of the stability of the superconducting state in RbxWO3 and identified the main causes of the contradictory data previously published. We have shown that the ordering of the Rb vacancies in the nonstoichiometric compounds have a major detrimental effect on the superconducting temperature Tc.The order-disorder transition is first order only near x = 0.25, where it cannot be quenched effectively and Tc is reduced below 1K. We found that the high Tc's which were sometimes deduced from resistivity measurements, and attributed to compounds with .25 < x < .30, are to be ascribed to interfacial superconductivity which generates spectacular non-linear effects. We also clarified the effect of acid etching and set more precisely the low-rubidium-content boundary of the hexagonal phase.This work makes clear that Tc would increase continuously (from 2 K to 5.5 K) as we approach this boundary (x = 0.20), if no ordering would take place - as its is approximately the case in CsxWO3. This behaviour is reminiscent of the tetragonal tungsten bronze NaxWO3 and asks the same question : what mechanism is responsible for this large increase of Tc despite the considerable associated reduction of the electron density of state ? By reviewing the other available data on these bronzes we conclude that the theoretical models which are able to answer this question are probably those where the instability of the lattice plays a major role and, particularly, the model which call upon local structural excitations (LSE), associated with the missing alkali atoms.Comment: To be published in Physical Review

    Theory of Coexistence of Superconductivity and Ferroelectricity : A Dynamical Symmetry Model

    Full text link
    We propose and investigate a model for the coexistence of Superconductivity (SC) and Ferroelectricity (FE) based on the dynamical symmetries su(2)su(2) for the pseudo-spin SC sector, h(4)h(4) for the displaced oscillator FE sector, and su(2)⊗h(4)su(2) \otimes h(4) for the composite system. We assume a minimal symmetry-allowed coupling, and simplify the hamiltonian using a double mean field approximation (DMFA). A variational coherent state (VCS) trial wave-function is used for the ground state: the energy, and the relevant order parameters for SC and FE are obtained. For positive sign of the SC-FE coupling coefficient, a non-zero value of either order parameter can suppress the other (FE polarization suppresses SC and vice versa). This gives some support to "Matthias' Conjecture" [1964], that SC and FE tend to be mutually exclusive. For such a Ferroelectric Superconductor we predict: a) the SC gap Δ\Delta (and TcT_c ) will increase with increasing applied pressure when pressure quenches FE as in many ferroelectrics, and b) the FE polarization will increase with increaesing magnetic field up to HcH_c . The last result is equivalent to the prediction of a new type of Magneto-Electric Effect in a coexistent SC-FE material. Some discussion will be given of the relation of these results to the cuprate superconductors.Comment: 46 page

    Men’s perceptions of treatment as prevention in South Africa: Implications for engagement in HIV care and treatment

    Get PDF
    While South Africa provides universal access to treatment, HIV testing and antiretroviral therapy (ART) uptake remains low, particularly among men. Little is known about community awareness of the effects of treatment on preventing transmission, and how this information might impact HIV service utilization. This qualitative study explored understandings of treatment as prevention (TasP) among rural South African men. Narratives emphasized the known value of ART for individual health, but none were aware of its preventive effects. Many expressed that preventing transmission to partners would incentivize testing, earlier treatment, and adherence in the absence of symptoms, and could reduce the weight of a diagnosis. Doubts about TasP impacts on testing and care included enduring risks of stigma and transmission. TasP information should be integrated into clinic-based counseling for those utilizing services, and community-based education for broader reach. Pairing TasP information with alternative testing options may increase engagement among men reluctant to be seen at clinics

    Wind-Blown Bubbles around Evolved Stars

    Get PDF
    Most stars will experience episodes of substantial mass loss at some point in their lives. For very massive stars, mass loss dominates their evolution, although the mass loss rates are not known exactly, particularly once the star has left the main sequence. Direct observations of the stellar winds of massive stars can give information on the current mass-loss rates, while studies of the ring nebulae and HI shells that surround many Wolf-Rayet (WR) and luminous blue variable (LBV) stars provide information on the previous mass-loss history. The evolution of the most massive stars, (M > 25 solar masses), essentially follows the sequence O star to LBV or red supergiant (RSG) to WR star to supernova. For stars of mass less than 25 solar masses there is no final WR stage. During the main sequence and WR stages, the mass loss takes the form of highly supersonic stellar winds, which blow bubbles in the interstellar and circumstellar medium. In this way, the mechanical luminosity of the stellar wind is converted into kinetic energy of the swept-up ambient material, which is important for the dynamics of the interstellar medium. In this review article, analytic and numerical models are used to describe the hydrodynamics and energetics of wind-blown bubbles. A brief review of observations of bubbles is given, and the degree to which theory is supported by observations is discussed.Comment: To be published as a chapter in 'Diffuse Matter from Star Forming Regions to Active Galaxies' - A volume Honouring John Dyson. Eds. T. W. Harquist, J. M. Pittard and S. A. E. G. Falle. 22 pages, 12 figure

    Redefining Clostridioides difficile infection antibiotic response and clinical outcomes

    Get PDF
    With the approval and development of narrow-spectrum antibiotics for the treatment of Clostridioides difficile infection (CDI), the primary endpoint for treatment success of CDI antibiotic treatment trials has shifted from treatment response at end of therapy to sustained response 30 days after completed therapy. The current definition of a successful response to treatment (three or fewer unformed bowel movements [UBMs] per day for 1-2 days) has not been validated, does not reflect CDI management, and could impair assessments for successful treatment at 30 days. We propose new definitions to optimise trial design to assess sustained response. Primarily, we suggest that the initial response at the end of treatment be defined as (1) three or fewer UBMs per day, (2) a reduction in UBMs of more than 50% per day, (3) a decrease in stool volume of more than 75% for those with ostomy, or (4) attainment of bowel movements of Bristol Stool Form Scale types 1-4, on average, by day 2 after completion of primary CDI therapy (ie, assessed on day 11 and day 12 of a 10-day treatment course) and following an investigator determination that CDI treatment can be ceased.Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc

    The genetic architecture of the human cerebral cortex

    Get PDF
    INTRODUCTION The cerebral cortex underlies our complex cognitive capabilities. Variations in human cortical surface area and thickness are associated with neurological, psychological, and behavioral traits and can be measured in vivo by magnetic resonance imaging (MRI). Studies in model organisms have identified genes that influence cortical structure, but little is known about common genetic variants that affect human cortical structure. RATIONALE To identify genetic variants associated with human cortical structure at both global and regional levels, we conducted a genome-wide association meta-analysis of brain MRI data from 51,665 individuals across 60 cohorts. We analyzed the surface area and average thickness of the whole cortex and 34 cortical regions with known functional specializations. RESULTS We identified 306 nominally genome-wide significant loci (P < 5 × 10−8) associated with cortical structure in a discovery sample of 33,992 participants of European ancestry. Of the 299 loci for which replication data were available, 241 loci influencing surface area and 14 influencing thickness remained significant after replication, with 199 loci passing multiple testing correction (P < 8.3 × 10−10; 187 influencing surface area and 12 influencing thickness). Common genetic variants explained 34% (SE = 3%) of the variation in total surface area and 26% (SE = 2%) in average thickness; surface area and thickness showed a negative genetic correlation (rG = −0.32, SE = 0.05, P = 6.5 × 10−12), which suggests that genetic influences have opposing effects on surface area and thickness. Bioinformatic analyses showed that total surface area is influenced by genetic variants that alter gene regulatory activity in neural progenitor cells during fetal development. By contrast, average thickness is influenced by active regulatory elements in adult brain samples, which may reflect processes that occur after mid-fetal development, such as myelination, branching, or pruning. When considered together, these results support the radial unit hypothesis that different developmental mechanisms promote surface area expansion and increases in thickness. To identify specific genetic influences on individual cortical regions, we controlled for global measures (total surface area or average thickness) in the regional analyses. After multiple testing correction, we identified 175 loci that influence regional surface area and 10 that influence regional thickness. Loci that affect regional surface area cluster near genes involved in the Wnt signaling pathway, which is known to influence areal identity. We observed significant positive genetic correlations and evidence of bidirectional causation of total surface area with both general cognitive functioning and educational attainment. We found additional positive genetic correlations between total surface area and Parkinson’s disease but did not find evidence of causation. Negative genetic correlations were evident between total surface area and insomnia, attention deficit hyperactivity disorder, depressive symptoms, major depressive disorder, and neuroticism. CONCLUSION This large-scale collaborative work enhances our understanding of the genetic architecture of the human cerebral cortex and its regional patterning. The highly polygenic architecture of the cortex suggests that distinct genes are involved in the development of specific cortical areas. Moreover, we find evidence that brain structure is a key phenotype along the causal pathway that leads from genetic variation to differences in general cognitive function

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
    • 

    corecore