38 research outputs found

    Longevity, lipids and C. elegans

    Get PDF
    Scientific investigation of mechanisms that determine lifespan can be divided into three general approaches. The first approach (the comparative method) began over a century ago comparing species differing greatly in maximum longevity and implicated a role for the speed of metabolism in determining the length of life [1]. The second approach commenced after the 1930s investigated the mechanisms whereby “calorierestriction” extended lifespan [2]. The third approach gained popularity in the 1990s and centred on genetic mutations that significantly extend longevity [3]. There has been little overlap between these three approaches. The paper by Shmookler Reis et al. in this issue [4] is significant in that it advances our understanding by combining the genetic mutants approach with recent insights from the first approach

    Effect of temperature on the rate of ageing : an experimental study of the Blowfly Calliphora stygia

    Get PDF
    All organisms age, the rate of which can be measured by demographic analysis of mortality rates. The rate of ageing is thermally sensitive in ectothermic invertebrates and we examined the effects of temperature on both demographic rates of ageing and on cellular senescence in the blowfly, Calliphora stygia. The short lifespan of these flies is advantageous for demographic measurements while their large body size permits individual-based biochemical characterisation. Blowflies maintained at temperatures from 12°C to 34°C had a five to six-fold decrease in maximum and average longevity, respectively. Mortality rates were best described by a two-phase Gompertz relation, which revealed the first-phase of ageing to be much more temperature sensitive than the second stage. Flies held at low temperatures had both a slower first-phase rate of ageing and a delayed onset of second-phase ageing, which significantly extended their longevity compared with those at high temperatures. Blowflies that were transferred from 29°C to 15°C had higher first-phase mortality rates than those of flies held at constant 15°C, but their onset of second-phase ageing was deferred beyond that of flies held constantly at this temperature. The accumulation of fluorescent AGE pigment, a measure of cellular oxidative damage, increased steadily over time in all blowflies, irrespective of the temporal pattern of mortality. Pigment accumulated steadily during periods of ‘negligible senescence’, as measured by minimal rate of mortality, and the rate of accumulation was significantly affected by temperature. Thus accumulation of AGE pigment is more representative of chronological age than a reflection of biological age or a cause of mortality

    Thyroid control over biomembranes: VI. Lipids in liver mitochondria and microsomes of hypothyroid rats

    Full text link
    The lipids of liver mitochondria prepared from normal rats and from rats made hypothyroid by thyroidectomy and injection with131INa contained similar amounts, per mg protein, of total lipids, phospholipids, neutral lipids and lipid phosphorus. Hypothyroidism caused a doubling of the relative amounts of mitochondrial cardiolipins (CL; to 20.5% of the phospholipid P) and an accompanying trend (although statistically not significant) toward decreased amounts of both phosphatidylcholines (PC) and phosphatidylserines (PS), with phosphatidylethanolamines (PE) remaining unchanged. The pattern of elevated 18∶2 fatty acyl content and depleted 20∶4 acyl groups of the mitochondrial phospholipids of hypothyroid preparations was reflected to varying degrees in the resolved phospholipids, with PC showing greater degrees of abnormality than PE, and CL showing none. Hypothyroidism produced the same abnormal pattern of fatty acyl distributions in liver microsomal total lipids as was found in the mitochondria. Hypothyroid rats, when killed 6 hr after injection of [1‐14C] labeled linoleate, showed the following abnormalities: the liver incorporated less label into lipids, and converted 18∶2 not exclusively to 20∶4 (as normals do) but instead incorporated the label mainly into saturated fatty acids. These data, together with the known decrease in β‐oxidation, suggest that hypothyroidism involves possible defective step(s) in the conversion of 18∶2 to 20∶4.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142296/1/lipd0328.pd

    The exceptional longevity of an egg-laying mammal, the short-beaked echidna (Tachyglossus aculeatus) is associated with peroxidation-resistant membrane composition

    No full text
    The echidna Tachyglossus aculeatus is a monotreme mammal from Australia that is exceptionally long-living. Its documented maximum lifespan of 50 years is 3.7 times that predicted from its body mass. Other exceptionally long-living mammals (naked mole-rats and humans) are known to have peroxidationresistant membrane composition, raising the question about echidnas. Phospholipids were extracted from skeletal muscle, liver and liver mitochondria of echidnas and fatty acid composition measured. As with other exceptionally long-living mammals, membrane lipids of echidna tissues were found to have a lower content of polyunsaturates and a higher content of monounsaturates than predicted for their body size. The peroxidation index (=peroxidation susceptibility) calculated from this membrane composition was lower-than-expected for their body size, indicating that the cellular membranes of echidnas would be peroxidation-resistant. Additionally when the calculated peroxidation index was plotted against maximum lifespan, the echidna values conformed to the relationship for mammals in general. These findings support the membrane pacemaker theory of aging and emphasise the potential importance of membrane fatty acid composition in aging and in the determination of maximum longevity

    Fowl play and the price of petrel: long-living Procellariiformes have peroxidation-resistant membrane composition compared with short-living Galliformes

    No full text
    The membrane pacemaker hypothesis predicts that long-living species will have more peroxidation-resistant membrane lipids than shorter living species. We tested this hypothesis by comparing the fatty acid composition of heart phospholipids from long-living Procellariiformes (petrels and albatrosses) to those of shorter living Galliformes (fowl). The seabirds were obtained from by-catch of commercial fishing operations and the fowl values from published data. The 3.8-fold greater predicted longevity of the seabirds was associated with elevated content of peroxidation-resistant monounsaturates and reduced content of peroxidation-prone polyunsaturates and, consequently, a significantly reduced peroxidation index in heart membrane lipids, compared with fowl. Peroxidation-resistant membrane composition may be an important physiological trait for longevous species

    Life and death : metabolic rate, membrane composition, and life span of animals

    Full text link
    Maximum life span differences among animal species exceed life span variation achieved by experimental manipulation by orders of magnitude. The differences in the characteristic maximum life span of species was initially proposed to be due to variation in mass-specific rate of metabolism. This is called the rate-of-living theory of aging and lies at the base of the oxidative-stress theory of aging, currently the most generally accepted explanation of aging. However, the rate-of-living theory of aging while helpful is not completely adequate in explaining the maximum life span. Recently, it has been discovered that the fatty acid composition of cell membranes varies systematically between species, and this underlies the variation in their metabolic rate. When combined with the fact that 1) the products of lipid peroxidation are powerful reactive molecular species, and 2) that fatty acids differ dramatically in their susceptibility to peroxidation, membrane fatty acid composition provides a mechanistic explanation of the variation in maximum life span among animal species. When the connection between metabolic rate and life span was first proposed a century ago, it was not known that membrane composition varies between species. Many of the exceptions to the rate-of-living theory appear explicable when the particular membrane fatty acid composition is considered for each case. Here we review the links between metabolic rate and maximum life span of mammals and birds as well as the linking role of membrane fatty acid composition in determining the maximum life span. The more limited information for ectothermic animals and treatments that extend life span (e.g., caloric restriction) are also reviewed.<br /

    Does the oxidative stress theory of aging explain longevity differences in birds? II. Antioxidant systems and oxidative

    Full text link
    The oxidative damage hypothesis of aging posits that the accumulation of oxidative damage is a determinant of an animal species\u27 maximum lifespan potential (MLSP). Recent findings in extremely long-living mammal species such as naked mole-rats challenge this proposition. Among birds, parrots are exceptionally long-living with an average MLSP of 25 years, and with some species living more than 70 years. By contrast, quail are among the shortest living bird species, averaging about 5-fold lower MLSP than parrots. To test if parrots have correspondingly (i) superior antioxidant protection and (ii) lower levels of oxidative damage compared to similar-sized quail, we measured (i) total antioxidant capacity, uric acid and reduced glutathione (GSH) levels, as well as the activities of enzymatic antioxidants (superoxide dismutase, glutathione peroxidase and catalase), and (ii) markers of mitochondrial DNA damage (8-OHdG), protein damage (protein carbonyls) and lipid peroxidation (lipid hydroperoxides and TBARS) in three species of long-living parrots and compared these results to corresponding measures in two species of short-living quails (average MLSP = 5.5 years). All birds were fed the same diet to exclude differences in dietary antioxidant levels. Tissue antioxidants and oxidative damage were determined both \u27per mg protein\u27 and \u27per g tissue\u27. Only glutathione peroxidase was consistently higher in tissues of the long-living parrots and suggests higher protection against the harmful effects of hydroperoxides, which might be important for parrot longevity. The levels of oxidative damage were mostly statistically indistinguishable between parrots and quails (67%), occasionally higher (25%), but rarely lower (8%) in the parrots. Despite indications of higher protection against some aspects of oxidative stress in the parrots, the pronounced longevity of parrots appears to be independent of their antioxidant mechanisms and their accumulation of oxidative damage
    corecore